Vector Bingo

1.
$$A = (8, -7)$$
 $B = (-7, -10)$ \overrightarrow{AB}
 $\langle -7 - 8, -10 - 7 \rangle = \langle -15, -3 \rangle$

2.
$$A = (7,1)$$
 $B = (10,-5)$ BA
 $(7-10,1--5) = (-3,6) = [-3,+6]$

3.
$$u = \langle 1, -6 \rangle \quad v = \langle -7, -5 \rangle \quad -u + v$$

 $-\langle 1, -6 \rangle + \langle -7, -5 \rangle = \langle -1, 6 \rangle + \langle -7, -5 \rangle = \langle -8, 1 \rangle$

4.
$$u = -9i$$
 $g = 3i + 4j$ $9u - 7g$ $9(-9i) - 7(3i + 4j) = -81i - 21i - 28j = [-102i - 28j]$

6.
$$-15i+36j=\sqrt{(-15)^2+(36)^2}=\sqrt{225+1296}=\sqrt{1521}=39$$

7.
$$20i-17j$$
 $\tan \theta = \frac{17}{20}$ $\theta = \tan^{-1}(\frac{-17}{20})$ $\theta = -40.36$ $360-40.36=319.64$

8.
$$\langle -10, \sqrt{69} \rangle$$
 $+ an \theta = \frac{\sqrt{69}}{-10} \theta = +an^{-1} \left(\frac{\sqrt{69}}{-10} \right) \frac{\sqrt{69}}{39.72}$
 $\theta = -39.72 \quad 180 - 39.72 = 140.28^{\circ}$

9.
$$u = \langle 24, -32 \rangle$$
 $||u|| = \sqrt{(24)^2 + (-32)^2} = \sqrt{576 + (024 = \sqrt{1600} = 40)}$
 $\langle 24, -32 \rangle = \langle \frac{24}{40}, \frac{-32}{40} \rangle = \langle \frac{3}{5}, \frac{-4}{5} \rangle$

10.
$$-13i + 6\sqrt{22}j$$
 $||\vec{y}|| = \sqrt{(-13)^2 + (6\sqrt{22})^2} = \sqrt{169 + 792} = \sqrt{961} = 31$

$$-\frac{13i + 6\sqrt{22}j}{31} = \left[-\frac{13}{31}j + \frac{6\sqrt{22}}{31}j \right]$$

11.
$$u = -7i$$
 $v = -4i + 5j$ $-7(-4) + 0(5) = 28$

13.
$$u = 3i + 6j$$
 $V = -3i + 5j$
 $\cos \theta = 3(-3) + 6(5)$ $\theta = \cos^{-1} \frac{21}{\sqrt{45}\sqrt{34}}$
 $\cos \theta = -9 + 30$ $\theta = 57.53^{\circ}$

14.
$$u = \langle -6, -9 \rangle \quad v = \langle 3, 3 \rangle$$

J45 J34

$$\cos \theta = \frac{-6(3) + -9(3)}{\sqrt{(-6)^2 + (-9)^2}} \qquad \theta = \cos^{-1} \frac{-45}{\sqrt{(3)^2 + (3)^2}}$$

$$650 = \frac{-18-27}{\sqrt{117}\sqrt{18}}$$
 $\theta = 168.69^{\circ}$

15.
$$u = \langle 25, -15 \rangle \quad v = \langle 3, 5 \rangle$$

$$25(3) + -15(5) = 75 - 75 = 0 \quad \text{Yes! orthogonal}$$
(Perpendicular)

16.
$$u=-9i-2j$$
 $v=3i-4j$

$$-9(3)+-2(-4)=-27+8=[-19]$$
 No!
The 2 vectors are not perpendicular because they do not equal zero.

17.
$$A = 5$$
 $A = 5$
 $A = 5$

$$B = \cos^{-1}\left(\frac{80.3584}{132.8}\right)$$

21.
$$<4,4>$$
 $7 = \sqrt{4^2+4^2} = \sqrt{16+16} = \sqrt{32} = 4\sqrt{2}$
 $4\sqrt{2} < \cos\theta, \sin\theta$ $+ \tan\theta = \frac{4}{4} = \frac{1}{4} = \frac{1}{4}$
 $4\sqrt{2} < \cos\frac{\pi}{4}, \sin\frac{\pi}{4}$

23.
$$\|u\| = 6 < -2.5 >$$

* find the unit vector $\frac{\langle -2.5 \rangle}{\sqrt{(-2)^2 + 5^2}} = \frac{\langle -2.5 \rangle}{\sqrt{4 + 25}} = \frac{\langle -2.5 \rangle}{\sqrt{29}}$

= $\langle -\frac{2}{\sqrt{29}}, \frac{5}{\sqrt{29}} \rangle = \langle -\frac{2\sqrt{29}}{29}, \frac{5\sqrt{29}}{29} \rangle$