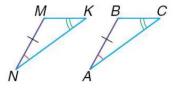
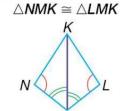
#### **Unit 3 Midterm Review**

### **Congruent Triangles**

#### \*\*REMEMBER: Congruent is different from similar!!!

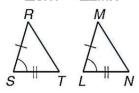

### SSS

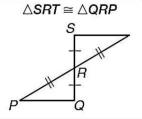

If the three sides of one triangle are congruent to the three sides of a second triangle, then the two triangles are congruent.

| Side-Side-Side (SSS)                |                                     |
|-------------------------------------|-------------------------------------|
| $\triangle XYZ \cong \triangle ABC$ | $\triangle ABC \cong \triangle ADC$ |
| X A B #C                            | $A \nearrow C$                      |

### Angle-Angle-Side (AAS)

 $\triangle$ *NMK*  $\cong \triangle$ *ABC* 



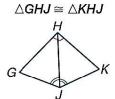




If two angles and a nonincluded side of one triangle are congruent to two angles and the corresponding nonincluded angle of a second triangle, then the two triangles are congruent.

### Side-Angle-Side (SAS)

 $\triangle SRT \cong \triangle LMN$ 



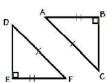



If two sides and the <u>included</u> angle of one triangle are congruent to two sides and the <u>included</u> angle of a second triangle, then the two triangles are congruent.

# Angle-Side-Angle (ASA)

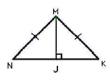
 $\triangle GHJ \cong \triangle FEG$ 






If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.

## HL


### Hypotenuse-Leg (HL)

If the hypotenuse and a leg of one right triangle is congruent to the hypotenuse and a leg of another right triangle, then the triangles are congruent



ΔDEF ≅ ΔCBA

 $\Delta$ NMJ  $\cong \Delta$ KMJ

