Unit 3 Agendo - Congruent Triongles - RACKETM

DATE	DAY	LESSON	Pages	HOMEWORK
$\begin{aligned} & \text { TUES } \\ & \text { q/20 } \end{aligned}$	3.1	Prerequisite Skills	2-3	DeltaMath 3.1 due 10/7 @ 8:20AM
$\begin{aligned} & \text { WED } \\ & \mathrm{q} / 2 \mid \end{aligned}$	3.2	Triangle Angles and Base Angles (no x-block)	4-5	DM
THURS q/22	3.3	Exterior Angles	6-7	DM
$\begin{gathered} \text { FRI } \\ \text { q/23 } \end{gathered}$	3.4	TITD \& Practice Day (x-block)	---	
FALH BREAK September 27th - October ${ }^{\text {st }}$				
$\begin{aligned} & \text { MON } \\ & 10 / 3 \\ & \hline \end{aligned}$	3.5	Triangle Congruence SSS \& HL	8-9	DM
TUES 10/4	3.6	Triangle Congruence SAS, ASA, AAS	10-11	DM
$\begin{aligned} & \text { WED } \\ & 10 / 5 \end{aligned}$	3.7	Triangle Congruence Card Sort	----------	DM
$\begin{aligned} & \text { THURS } \\ & \text { IO/6 } \end{aligned}$	3.8	Quiz Review	12-13	Quiz Review and DM due tomorrow!
$\begin{gathered} \text { FRI } \\ 10 / 7 \end{gathered}$	3.9		----------	
$\begin{aligned} & \text { MON } \\ & \text { IO/IO } \end{aligned}$	3.10	(PACKET \#2) Congruency Proofs		HW IN PACKET PAGE 6
$\begin{aligned} & \text { TUES } \\ & \text { IO/II } \end{aligned}$	3.11	CPCTC		HW IN PACKET PAGES 10 \& 11
$\begin{aligned} & \text { WED } \\ & 10 / 12 \end{aligned}$		PSAT DAY! \& Practice		
$\begin{aligned} & \text { THURS } \\ & \text { IO/13 } \end{aligned}$	3.12	Congruency Proofs Book		$\begin{aligned} & \text { FINISH PAGES } \\ & 6,10, \& 11 \end{aligned}$
$\begin{gathered} \text { FRI } \\ \mathrm{IO} / \mathrm{IH} \end{gathered}$	3.13	Quiz Review		Quiz Review and HW due tomorrow!
$\begin{aligned} & \text { MON } \\ & 10 / 7 \end{aligned}$	3.14		----------	
$\begin{aligned} & \text { TUES } \\ & \text { IO/8 } \end{aligned}$	3.15	Medians \& Centroids \& Maze Practice		
WED IO/Iq	3.16	Putting It All Together		Start Test Review
$\begin{aligned} & \text { THURS } \\ & \text { IO/20 } \end{aligned}$	3.17	Test Review		Test Review due tomorrow!
$\begin{gathered} \text { FRI } \\ 10 / 2 \mid \end{gathered}$	3.18	TEST TODAYM GOOD LUCRIM	-------	

*Agenda is subject to changel!! *

Name: \qquad
\qquad

Quick Geometry Vocabulary Review

Term	Definition	Notation
Point	An exact position or location in a given plane.	
L^NE	The set of points between points A and B in a plane and the infinite number of points that continue beyond the points.	
SEGMENT	A line with two endpoints.	
RAY	A line that starts at A, goes through B, and continues on.	
P/ane	A flat, two-dimensional surface that extends infinitely far.	
Angle	Formed by 2 rays coming together at a common point (Vertex)	
Parallel Lines	Lines in a plane that do not meet (they do not intersect).	
Perpendicular Lines	Two lines that meet (or intersect) at 90 degree angles (right angles).	

Types of Angles

TYPE OF ANGLE	MEASUREMENT	SKETCH
ACUTE		
RIGHT		
OBTUSE		
STRAIGHT		

Classwork - Fill in the blanks with the appropriate definition and notation.

Name the following angles with the correct notation.

8. $\angle 1$ \qquad 9. $\angle 2$ \qquad 10. $\angle 3$ \qquad
11. $\angle 4$ \qquad 12. $\angle 5$ \qquad 13. $\angle 6$ \qquad

Use the diagram on the right to answer to following questions.
14. $m<B A D=$ \qquad 15. $m<B A H=$ \qquad

25. Name the 22 cm segment: \qquad
26. Name the 8 cm segment: \qquad

Geometry - DAY 3.2 Triangle Angles

Name:
Date: \qquad
WARM-UP:
1.

TRIANGLE SUM

The sum of the measures of the interior angles of a triangle is \qquad ${ }^{\circ}$.

Find the missing angle measure that would make a triangle.

1. Angle A: 72 degrees

Angle B: 63 degrees
Angle C: \qquad
2. Angle D: \qquad
Angle E: 119 degrees
Angle F: 13 degrees

Find the value of x in each figure.
3. $x=$ \qquad

4. $x=$ \qquad

Isosceles Triangles \& Base Angles

If two sides of a triangle are congruent, then the \qquad of those sides are \qquad .
5. $x=$ \qquad
6. $x=$ \qquad

If two angles of a triangle are congruent, then the \qquad opposite those angles are \qquad .
7. $x=$ \qquad

8. $x=$ \qquad

PRACTICE!!! Classwork!

Find the missing angle measure that would make a triangle.

1. Angle A: 108 degrees

Angle B: 32 degrees
Angle C: \qquad

Solve for the missing angle or x .
3. $?=$ \qquad

5. $x=$

4. $?=$ \qquad

6. $x=$ \qquad

7. $x=$ \qquad

8. $x=$ \qquad

9. $x=$ \qquad

10. $x=$ \qquad

$$
m \angle 2=x+48
$$

11. $x=$

11
12. $x=$ \qquad

Geometry - DAY 3.3

Exterior Angles

Name:
Date: \qquad
WARM-UP: Solve for x .

2.

Notes:

EXTERIOR ANGLE THEOREM

The measure of an exterior angle of a triangle is equal to the \qquad of the measures of the two remote interior angles.

Find the value of x in each figure.

1. $x=$ \qquad

2. $x=$ \qquad

Find the value of each numbered angle.
3. $\mathrm{m} \angle 1=$ \qquad
4. $\mathrm{m} \angle 2=$ \qquad
5. $m \angle 3=$ \qquad
6. $\mathrm{m} \angle 4=$ \qquad
7. $\mathrm{m} \angle 5=$ \qquad

8. $\mathrm{m} \angle 6=$ \qquad

CLASSWORK PRACTICE

Find the missing angle.

1. ? $=$ \qquad

2. $?=$ \qquad

3. $?=$
4.

Solve for x.
5. $x=$ \qquad
7. $x=$

6. $x=$ \qquad

8. $x=$

Geometry - DAY 3.4
Triangle Congruence: SSS and HL

Name \qquad Date
\qquad have congruent sides and congruent angles.

The parts of congruent triangles that "match" are called \qquad .

Complete the congruence statement for the following.

$$
\Delta A B C \cong \Delta
$$

$$
\Delta G H K \cong \Delta
$$

$\triangle \mathrm{ACB} \cong \triangle$ \qquad

Example: Given $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$
Make six congruence statements about the corresponding parts.
Mark the diagrams with hash marks and arcs to identify congruent parts.
\qquad $\overline{\mathrm{AB}} \cong$ \qquad
\qquad $\overline{\mathrm{AC}} \cong$ \qquad

$$
\angle C \cong
$$

$\overline{\mathrm{BC}} \cong$ \qquad

Special properties to remember: (you can add these markings to your diagrams!!!)
1)

2)

$$
\angle 1 \cong \angle 2 \text { because }
$$

3)

$\angle 1 \cong \angle _\quad \angle 2 \cong \angle$
by \qquad

If we can show just \qquad (rather than six) corresponding parts in a \qquad are congruent, then that is enough to prove the two triangles are congruent.

1. In two triangles, $\overline{D F} \cong \overline{U V}, \overline{F E} \cong \overline{V W}$ and $\overline{D E} \cong \overline{U W}$.

Write a congruence statement.
Δ \qquad $\cong \Delta$ \qquad by \qquad
2. Determine whether the triangles are congruent. If they are, write a congruence statement explaining why they are congruent.
Δ \qquad $\cong \Delta$ \qquad by \qquad

YOU TRY! Are these triangles congruent by SSS? If so, name them. Remember your special properties!
1.
 $\cong \Delta$
2.

Δ \qquad $\cong \Delta$ \qquad
3.

Δ \qquad $\cong \Delta$
4.

Δ \qquad
\qquad

Parts of a Right Triangle

HL

Hypotenuse-Leg (HL)

If the hypotenuse and a leg of one right triangle is congruent to the hypotenuse and a leg of another right triangle, then the triangles are congruent
$\triangle \mathrm{DEF} \cong \triangle C B A$

$\Delta \mathrm{NMJ} \cong \Delta K M J$

Can you use $\underline{\mathrm{HL}}$ to prove the two triangles congruent? If yes, write a congruence statement. If not, explain why not.
1.

2.

3. \qquad

4. \qquad 5. \qquad

Geometry DAY 3.6
Triangle Congruence: SAS, ASA, and AAS
Included Angle \qquad
Name the angle included between $\overline{A B}$ and $\overline{B C}$
$\overline{B C}$ and $\overline{A C}$ \qquad $\overline{A C}$ and $\overline{A B}$ \qquad
Included Side \qquad

1. In $\triangle M A T$, which side is included between $<A$ and $<T$?
2. In $\triangle M A T$, which side is included between $<M$ and $<A$?
3. Which side is not included between angles A and T ?

Name
Date

The third, fourth, and fifth congruence theorem:

If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.

If two angles and a nonincluded side of one triangle are congruent to two angles and the corresponding nonincluded angle of a second triangle, then the two triangles are congruent.

1. In two triangles, $D F \cong U V, F E \cong V W$ and $m<F \cong m<V$. Write a congruence statement.
Δ \qquad $\cong \Delta$ \qquad by \qquad
2. If $<E D F \cong<L N P, D E \cong N L$ and $<E \cong<L$. Write the congruence statement. Δ \qquad $\cong \Delta$ \qquad by \qquad

Determine whether the triangles are congruent.
If they are, write a congruence statement explaining why they are congruent.
3.

4.

$\Delta Q R T \cong \Delta$ \qquad by \qquad
$\Delta \mathrm{PLM} \cong \Delta$ \qquad by \qquad
5.

$\Delta S P R \cong \Delta$ \qquad by \qquad
6.

$\triangle \mathrm{MHG} \cong \Delta _$by \qquad
7.

$\Delta B D C \cong \Delta$ \qquad by \qquad
8.

Given: M is the midpoint of $\overline{A B}$.
$\triangle M C B \cong \triangle$ \qquad by \qquad
9. Use the two triangles on the right to answer the following questions:
A. What other pair of angles needs to be marked so that the two triangles are congruent by ASA? \qquad
B. What other pair of angles needs to be marked so that the two triangles are congruent by AAS? \qquad

Review for Quiz - Congruent Triangles \& Triangle Angles

Name \qquad

1. Define congruent triangles:

Given that $\triangle P R T \cong \triangle X Q J$, complete questions 2-6.
2. $\overline{R T} \cong$ \qquad
3. $\angle J \cong$ \qquad
4. $\triangle X J Q \cong$ \qquad

5. If $J Q=24, Q X=18, J X=30$, and $R T=2 y+10$, then $y=$ \qquad
6. If $m \angle R=57^{\circ}, m \angle P=62^{\circ}$, then $m \angle X=$ \qquad and $m \angle J=$ \qquad .
7. What are the five ways used to prove that two triangles are congruent?
8. Name the congruent triangles.

$\triangle A B C \cong$ \qquad by \qquad
9. Name the congruent triangles.

$\triangle A B C \cong$ \qquad by \qquad

For questions 10-18, determine if the triangles are congruent. If they are congruent, then list the method used. If they are not congruent, write NC.
10.

11.

12.

13.

14.

15.

16.

17.

18.

Use $\triangle U V W$ and $\triangle X Y Z$ with the given information. List the missing corresponding parts needed to prove the triangles congruent by the given method.

19. $\overline{U V} \cong \overline{X Y}$ and $<W \cong<Z$

AAS \qquad
Solve for the missing value.
21. $x=$ \qquad

24. $x=$ \qquad

27. ? $=$ \qquad

22. $x=$ \qquad

25. $x=\ldots m<2=$ \qquad

$$
m \angle 2=x+49
$$

28. $x=$ \qquad

23. $x=\ldots m<A=$ \qquad

26. $x=$ \qquad $m<2=$ \qquad

$$
m \angle 2=5 x+16
$$

29. $x=$ \qquad $m<V W U=\ldots \quad m<W V U=$

