******Please READ: All of the Half Angle Problems can be found AFTER the Double Angle Problems.

(0)

Review
$$\omega S$$
 - Double Angle Identities
1) $tan 450° = tan (2.225°) = 2 tan 225° = 2(1) = 2
1 - tan 2225° = $\frac{2(1)}{1-1} = \frac{2}{1-1}$$

2)
$$\cos \frac{8\pi}{3} = \cos(2 \cdot \frac{4\pi}{3}) = \cos^2(\frac{4\pi}{3}) - \sin^2(\frac{4\pi}{3})$$

= $(-\frac{1}{2})^2 - (-\frac{\sqrt{3}}{2})^2 = 4 - \frac{2}{4} = -\frac{2}{4} = -\frac{1}{2}$

3)
$$CSC 600^{\circ} = CSC (2.300^{\circ}) *Change to sin then flip for CS
 $Sin(2.300^{\circ}) = 2 sin 300^{\circ} cos 300^{\circ}$
 $= 2(-\frac{\sqrt{3}}{2})(\frac{1}{2}) = -\frac{2\sqrt{3}}{4} = -\frac{\sqrt{3}}{2}$
 $CSC 600^{\circ} = -\frac{1}{\sqrt{3}}, \frac{\sqrt{3}}{\sqrt{3}} = (-\frac{2\sqrt{3}}{3})$$$

8)
$$\cos \theta = \frac{1}{3}$$
 $\left(\frac{1^2 + b^2 = 3^2}{b^2 = 8}\right)$ $\sin 2\theta = 2 \sin \theta \cos \theta$. $\left(\frac{2\sqrt{5}^2}{3}\right) \left(\frac{1}{3}\right) = \frac{4\sqrt{5}^2}{9}$

9)
$$\cos \theta = \frac{4}{5}$$
 $\sin 2\theta = 2 \sin \theta \cos \theta$

$$= 2 \left(-\frac{3}{15}\right) \left(\frac{4}{5}\right) = \left[-\frac{24}{25}\right]$$

(4)
$$\cot x = \frac{4}{3} \text{ off} \quad \sin 2x = 2 \sin x \cos x$$

= $2(-\frac{3}{5})(-\frac{4}{5}) = \frac{24}{25}$

15)
$$\cot x = \frac{4}{3} \text{ off}$$
 $\cot 2x + \text{change to } \cot + \text{then flip for } \cot + \text{an } 2x = \frac{2 + \text{an } x}{1 - \tan^2 x} = \frac{2(\frac{3}{4})}{1 - (\frac{3}{4})^2}$

$$= \frac{\frac{6}{4}}{1 - \frac{9}{10}} = \frac{\frac{3}{2}}{\frac{1}{10} - \frac{9}{10}} = \frac{\frac{3}{2}}{\frac{7}{10}} = \frac{3}{7} \cdot \frac{\frac{1}{10}}{7} = \frac{24}{7}$$

(9) $\cos 2x + \sin x = -2$ $1-2\sin^2 x + \sin x = -2$ +2 $-2\sin^2 x + \sin x + 3 = 0$ * Multiply all terms by -1 $2\sin^2 x - \sin x - 3 = 0$ $(2\sin x - 3)(\sin x + 1) = 0$ $2\sin x - 3 = 0$ $\sin x + 1 = 0$ $2\sin x = 3$ $\sin x = -1$ $\sin x = 3$ $\sin x = -1$ $\sin x = 3$

20) $\cos 2x - \sin 2x = -2\sin x \cos x$ $2\cos^2 x - 1 - 2\sin x \cos x = -2\sin x \cos x$ $+2\sin x \cos x + 2\sin x \cos x$ $2\cos^2 x - 1 = 0$

 $\frac{2 \cos^{2} x = 1}{\int \cos^{2} x = \frac{1}{2}}$ $\cos x = \pm \frac{1}{\sqrt{2}}, \frac{\sqrt{2}}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2}$

X= 4, 4, 54, 4,

21) $\cos^2 x - \frac{3}{2} \cos 2x = 0$ $\cos^2 x - \frac{3}{2} (2\cos^2 x - 1) = 0$ $\cos^2 x - 3\cos^2 x + \frac{3}{2} = 0$ $-2\cos^2 x + \frac{3}{2} = 0$ $(-\frac{1}{2}) - 2\cos^2 x = -\frac{3}{2}(-\frac{1}{2})$ $\int \cos^2 x = \frac{3}{4}$

(05X=± =

X= 15, 517, 717 1117

$$\cos 2x - 11 \cos x = 5$$

 $2 \cos^2 x - 1 - 11 \cos x = 5$
 -5

$$2 \cos^2 x - 11 \cos x - 6 = 0$$

 $(2 \cos x + 1)(\cos x - 6) = 0$

$$2\cos X = -1 \cos X = 6$$

 $\cos X = \frac{2\pi}{3}, \frac{4\pi}{3}$

$$\left(X = \frac{211}{3}, \frac{411}{3}\right)$$

$$x = + cin \times (1 + cos 2x)$$

$$= \frac{sin x}{cos x} (x + 2 cos^2 x - x)$$

30)
$$\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$$

$$= \frac{1 - \tan^2 x}{\sec^2 x}$$

$$= \frac{1}{5ec^2x} - \frac{\tan^2x}{5ec^2x}$$

$$= (05^{2} \times - \frac{\sin^{2} \times /(05^{2} \times 1)}{1/(05^{2} \times 1)}$$

$$\Rightarrow = \cos^2 x - \frac{\sin^2 x}{\cos^2 x} \cdot \frac{\cos^2 x}{1}$$

$$= \cos^2 x - \sin^2 x$$

Y)
$$\sin 165^{\circ}$$
 * $165(2)=330^{\circ}$ * $02 \sin 15 Ros$
 $\sin (\frac{330}{2}) = \sqrt{1-\sqrt{3}}$
 $=\sqrt{2-\sqrt{3}}, 1 = \sqrt{2-\sqrt{3}}$
 $=\sqrt{2}$
 $=\sqrt{2}$

5)
$$\cos \frac{2\pi}{8} + \frac{2\pi}{8}, 2 = \frac{14\pi}{8} = \frac{2\pi}{4} + 22 \cos i \sin n \log n$$

 $\cos \left(\frac{2\pi}{2}\right) = -\frac{1+\cos 2\pi}{2} = -\frac{1+\sqrt{2}}{2} = -\frac{2+\sqrt{2}}{2}$
 $= -\frac{2+\sqrt{2}}{2} = -\frac{2+\sqrt{2}}{2}, \frac{1}{2} = -\frac{2+\sqrt{2}}{2}$

6)
$$\sec \frac{5\pi}{12} \Rightarrow \frac{5\pi}{12} \cdot \frac{2}{12} = \frac{10\pi}{12} = \frac{5\pi}{12}$$

$$\operatorname{Sec}\left(\frac{5\pi}{12}\right) = \operatorname{Find}\left(\cos + \operatorname{then} + \operatorname{take} \operatorname{reciproxal}\left(\operatorname{For}\operatorname{Sec}\right)\right) = \frac{1+\sqrt{5}}{2} = \frac{\frac{2}{2}-\frac{\sqrt{5}}{2}}{2} = \frac{\frac{2}{2}-\frac{\sqrt{5}}{2}}{2} = \frac{2-\sqrt{5}}{2} = \frac{2-\sqrt{5}$$

Sec
$$\left(\frac{5\pi/6}{2}\right) = \sqrt{\frac{4}{2-\sqrt{3}}} = \sqrt{\frac{4}{2-\sqrt{3}}} = \sqrt{\frac{8+4\sqrt{3}}{4-3}}$$

$$= \sqrt{\frac{8+453}{1}} = \sqrt{\frac{8+453}{1}} = \sqrt{\frac{8+453}{1}} \text{ or keepgoing.}$$

7)
$$8 \text{ in } \theta = -\frac{7}{28}$$
 $270^{\circ} < \theta < 360^{\circ}$ $Q + \frac{24}{25}$ $\frac{24}{25}$ $\frac{24}{2$

12)
$$\cos \theta = -\frac{15}{17}$$
 $180^{\circ} < \theta < 270^{\circ}$ $90^{\circ} < \frac{\theta}{2} < 135^{\circ}$ -8 17
 $4a \wedge \frac{\theta}{2} = \frac{1-\cos \theta}{5 \ln \theta} = \frac{1-(-\frac{15}{17})}{-\frac{8}{17}} = \frac{\frac{17}{17} + \frac{15}{17}}{-\frac{9}{17}} = \frac{3247}{-\frac{9}{17}}$
 $= \frac{32^{4}}{17} - \frac{17}{8} = -\frac{1}{4}$

13) $+a \wedge x = -\frac{7}{24}$ $\frac{3\pi}{2} < x < 2\pi$ $\frac{24}{25} - \frac{24}{15}$
 $= \frac{3\pi}{4} < \frac{x}{2} < \pi$ $\frac{2\pi}{4} < \frac{x}{2} < \pi$ $\frac{2\pi}{4} < \frac{x}{2} < \pi$
 $= \frac{3\pi}{4} < \frac{x}{2} < \pi$ $\frac{2\pi}{4} < \frac{x}{2} < \pi$ $\frac{2\pi}{4} < \frac{x}{2} < \pi$
 $= \frac{2\pi}{15} = \frac{1-\cos x}{25} = \frac{1-\cos x}{7} = \frac{1-\frac{24}{15}}{35} = \frac{25-\frac{24}{25}}{25} = \frac{1-\cos x}{7}$

16) $+a \wedge x = \frac{2}{15} = \frac{1-\cos x}{7} = \frac{1-\cos x}{7} = \frac{1-\cos x}{7} = \frac{1-\cos x}{7}$
 $= \frac{1-\frac{1}{15}}{10} = \frac{1-\cos x}{10} = \frac{$

17)
$$\sin x = -\frac{3}{5}$$
 $\frac{5\pi}{2} < x < 2\pi$
 $\tan \frac{x}{2} = \frac{1 - \cos x}{5 \cos x}$
 $= \frac{1 - \frac{1}{5}}{5} = \frac{1}{5} - \frac{1}{5} = \frac{1}{5} - \frac{1}{3}$

18) $\cot x = -3\sqrt{11}$ add $\frac{3\pi}{2} < x < 2\pi$
 $= \frac{1 - \cos x}{91 \text{ opt}}$
 $\frac{3\pi}{2} < \frac{x}{2} < \pi$
 $\frac{3\pi}{3}$

18) $\cot x = -3\sqrt{11}$ add $\frac{3\pi}{2} < x < 2\pi$
 $\frac{3\pi}{3}$
 $\frac{3\pi}{3} < \frac{3\pi}{3} < \frac{3\pi}{3}$
 $\frac{3\pi}{3} < \frac{3\pi}{3} < \frac{3\pi}{3} < \frac{3\pi}{3}$
 $\frac{3\pi}{3} < \frac{3\pi}{3} < \frac$