******Please READ: All of the Half Angle Problems can be found AFTER the Double Angle Problems.

Review wo - Double Angle Identities

1) $\tan 450^{\circ}=\tan \left(2.225^{\circ}\right)=\frac{2 \tan 225^{\circ}}{1-\tan ^{2} 225^{\circ}}=\frac{2(1)}{1-1^{2}}=\frac{2}{1-1}$
$\frac{z}{0}=$ undefinco
2)

$$
\begin{gathered}
\cos \frac{8 \pi}{3}=\cos \left(2 \cdot \frac{4 \pi}{3}\right)=\cos ^{2}\left(\frac{4 \pi}{3}\right)-\sin ^{2}\left(\frac{4 \pi}{3}\right) \\
=\left(-\frac{1}{2}\right)^{2}-\left(-\frac{\sqrt{3}}{2}\right)^{2}=\frac{1}{4}-\frac{3}{4}=-\frac{2}{4}=-\frac{1}{2}
\end{gathered}
$$

3) $\csc 600^{\circ}=\csc \left(2.300^{\circ}\right)$ * Change to sin then flip for Cs

$$
\begin{aligned}
& \sin \left(2.300^{\circ}\right)=2 \sin 300^{\circ} \cos 300^{\circ} \\
&=2\left(\frac{-\sqrt{3}}{2}\right)\left(\frac{1}{2}\right)=-\frac{2 \sqrt{3}}{4}=-\frac{\sqrt{3}}{2} \\
& \csc 600^{\circ}=-\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=-\frac{2 \sqrt{3}}{3}
\end{aligned}
$$

8) $\cos \theta=\frac{1}{3}$

$$
\left\{\begin{array}{l}
1^{2}+b^{2}=3^{2} \\
b^{2}=8 \\
b^{2}=2 \sqrt{2}
\end{array}\right\}
$$

$$
\begin{aligned}
\sin 2 \theta & =2 \sin \theta \cos \theta \\
& =2\left(\frac{2 \sqrt{2}}{3}\right)\left(\frac{1}{3}\right)=\frac{4 \sqrt{2}}{9}
\end{aligned}
$$

9) $\cos \theta=\frac{4}{5}$

$$
\begin{aligned}
\sin 2 \theta & =2 \sin \theta \cos \theta \\
& =2\left(-\frac{3}{15}\right)\left(\frac{4}{5}\right)=-\frac{24}{25}
\end{aligned}
$$

14) $\quad \cot x=\frac{4}{3} \operatorname{ads}$

$$
\begin{aligned}
\sin 2 x & =2 \sin x \cos x \\
& =2\left(-\frac{3}{5}\right)\left(-\frac{4}{5}\right)=\frac{24}{25}
\end{aligned}
$$

15) $\cot x=\frac{4}{3}$ of $\cot 2 x$ *large to tan then flip for cot

$$
\begin{aligned}
& \tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}=\frac{2\left(\frac{3}{4}\right)}{1-\left(\frac{3}{4}\right)^{2}} \\
& =\frac{\frac{6}{4}}{1-\frac{9}{10}}=\frac{\frac{3}{2}}{\frac{16}{16}-\frac{9}{16}}=\frac{\frac{3}{2}}{\frac{7}{16}}=\frac{3}{2} \cdot \frac{16}{7}=\frac{24}{7}
\end{aligned}
$$

$\cot 2 x=\frac{7}{24}$
19)

$$
\begin{gathered}
\cos 2 x+\sin x=-2 \\
1-2 \sin ^{2} x+\sin x=-2 \\
+2
\end{gathered}
$$

$-2 \sin ^{2} x+\sin x+3=0$

* Multiply all terms by -1

$$
\begin{aligned}
& 2 \sin ^{2} x-\sin x-3=0 \\
& (2 \sin x-3)(\sin x+1)=0 \\
& 2 \sin x-3=0 \quad \sin x+1=0 \\
& 2 \sin x=3 \quad \sin x=-1 \\
& \sin x=\frac{3}{2} \quad x=\frac{3 \pi}{2}
\end{aligned}
$$

20)

$$
\begin{aligned}
& \cos 2 x-\sin 2 x=-2 \sin x \cos x \\
& 2 \cos ^{2} x-1-2 \sin x \cos x=-2 \sin x \cos x \\
& \\
& +2 \sin x \cos x \quad+2 \sin x \cos x \\
& 2 \cos ^{2} x-1=0 \\
& 2 \cos ^{2} x= \\
& \sqrt{\cos ^{2} x}= \\
& =\frac{1}{2} \\
& \cos x=
\end{aligned}
$$

21)

$$
\begin{aligned}
& \cos ^{2} x-\frac{3}{2} \cos 2 x=0 \\
& \cos ^{2} x-\frac{3}{2}\left(2 \cos ^{2} x-1\right)=0 \\
& \cos ^{2} x-3 \cos ^{2} x+\frac{3}{2}=0 \\
& -2 \cos ^{2} x+\frac{3}{2}=0 \\
& \left(-\frac{1}{2}\right)-2 \cos ^{2} x=-\frac{3}{2}\left(-\frac{1}{2}\right) \\
& \sqrt{\cos ^{2} x}=\sqrt{\frac{3}{4}} \quad x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}
\end{aligned}
$$

24)

$$
\begin{aligned}
& \cos 2 x-11 \cos x=5 \\
& 2 \cos ^{2} x-1-11 \cos x=5 \\
& -5 \\
& \hline 2 \cos ^{2} x-11 \cos x-6=0 \\
& (2 \cos x+1)(\cos x-6)=0 \\
& 2 \cos x+1=0 \quad \cos x-6=0 \\
& 2 \cos x=-1 \quad \cos x=16 \\
& \cos x=-\frac{1}{2} \quad x=\frac{2 \pi}{3}, \frac{4 \pi}{3}
\end{aligned}
$$

25) $\cos ^{2} \frac{3 \pi}{7}-\sin ^{2} \frac{3 \pi}{7}=\cos \left(2 \cdot \frac{3 \pi}{7}\right)=\cos \frac{6 \pi}{7}$
26) $\frac{2 \tan 31^{\circ}}{1-\tan ^{2} 31^{\circ}}=\tan \left(2.31^{\circ}\right)=\tan 62^{\circ}$
27)

$$
\begin{aligned}
\sin 2 x & =\tan x(1+\cos 2 x) \\
& =\frac{\sin x}{\cos x}\left(x+2 \cos ^{2} x-x\right) \\
& =\frac{\sin x}{\cos x} \cdot 2 \cos ^{2} x \\
& =\sin x \cdot 2 \cos x \\
& =2 \sin x \cos x \\
& =\sin 2 x
\end{aligned}
$$

30)

$$
\left.\begin{array}{rl}
\cos 2 x & =\frac{1-\tan ^{2} x}{1+\tan ^{2} x} \\
& =\frac{1-\tan ^{2} x}{\sec ^{2} x} \\
& =\frac{1}{\sec ^{2} x}-\frac{\tan ^{2} x}{\sec ^{2} x} \\
& =\cos ^{2} x-\frac{\sin ^{2} x / \cos ^{2} x}{1 / \cos ^{2} x}
\end{array}\right\}=\cos ^{2} x-\frac{\cos ^{2} x}{\cos ^{2} x} .
$$

4)

$$
\begin{aligned}
& \sin 165^{\circ} * 165(2)=330^{\circ} * Q_{2} \text { sin is Pos } \\
& \sin \left(\frac{330}{2}\right)=\sqrt{\frac{1-\frac{\sqrt{3}}{2}}{2}}=\sqrt{\frac{\frac{2}{2}-\frac{\sqrt{3}}{2}}{2}}=\sqrt{\frac{2-\sqrt{3}}{2}} \\
& =\sqrt{\frac{2-\sqrt{3}}{2} \cdot \frac{1}{2}}=\sqrt{\frac{2-\sqrt{3}}{4}}=\frac{\sqrt{2-\sqrt{3}}}{2}
\end{aligned}
$$

5.)

$$
\begin{aligned}
& \cos \frac{7 \pi}{8} \quad * \frac{7 \pi}{8}, 2=\frac{14 \pi}{8}=\frac{7 \pi}{4} * Q_{2} \cos \text { is neg. } \\
& \cos \left(\frac{7 \pi / 4}{2}\right)=-\sqrt{\frac{1+\cos \frac{7 \pi}{4}}{2}}=-\sqrt{\frac{1+\sqrt{2} / 2}{2}}=-\sqrt{\frac{\frac{2}{2}+\frac{\sqrt{2}}{2}}{2}} \\
& =\sqrt{\frac{\frac{2+\sqrt{2}}{2}}{2}}=-\sqrt{\frac{2+\sqrt{2}}{2} \cdot \frac{1}{2}}=-\sqrt{\frac{2+\sqrt{2}}{4}}=\frac{-\sqrt{2+\sqrt{2}}}{2}
\end{aligned}
$$

6) $\sec \frac{5 \pi}{12} \Rightarrow \frac{5 \pi}{12} \cdot 2=\frac{10 \pi}{12}=\frac{5 \pi}{6} \quad Q_{1}-A l l$ Positive $\sec \left(\frac{5 \pi / 6}{2}\right)$ Find \cos then take reciprocal for sec

$$
\begin{aligned}
& \cos \left(\frac{5 \pi / 6}{2}\right)=\sqrt{\frac{1+\cos \frac{5 \pi}{6}}{2}}=\sqrt{\frac{1+\frac{-\sqrt{3}}{2}}{2}}=\sqrt{\frac{\frac{2}{2}-\frac{\sqrt{3}}{2}}{2}} \\
& =\sqrt{\frac{\frac{2-\sqrt{3}}{2}}{2}}=\sqrt{\frac{2-\sqrt{3}}{2} \cdot \frac{1}{2}}=\sqrt{\frac{2-\sqrt{3}}{4}} \\
& \sec \left(\frac{5 \pi / 6}{2}\right)=\sqrt{\frac{4}{2-\sqrt{3}}}=\sqrt{\frac{4}{2-\sqrt{3}} \cdot\left(\frac{2+\sqrt{3}}{(2+\sqrt{3})}\right.}=\sqrt{\frac{8+4 \sqrt{3}}{4-3}} \\
& =\sqrt{\frac{8+4 \sqrt{3}}{1}}=\frac{\sqrt{8+4 \sqrt{3}}}{\sqrt{1}}=\sqrt{8+4 \sqrt{3}} \\
& \text { or keep going u } \\
& =\sqrt{4(2+\sqrt{3})}=2 \sqrt{2+\sqrt{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 7) } \begin{array}{l}
\sin \theta=-\frac{7}{25} \quad \frac{270^{\circ}}{2}<\frac{\theta}{2}<\frac{360^{\circ}}{2} \quad Q 4 \\
\cos \frac{\theta}{2}=-\sqrt{\frac{1+\cos \theta}{2}} \quad 135^{\circ}<\frac{\theta}{2}<180^{\circ} \quad Q 2 \\
=-\sqrt{\frac{1+24 / 25}{2}}=-\sqrt{\frac{25 / 25+\frac{24}{25}}{2}}=-\sqrt{\frac{49 / 25}{2}}=-\sqrt{\frac{49}{25} \cdot \frac{1}{2}} \\
=-\sqrt{\frac{49}{50}}=-\frac{7}{\sqrt{50}}=-\frac{7}{5 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{-7 \sqrt{2}}{10}
\end{array}
\end{aligned}
$$

$$
(2 \sqrt{5})^{2}+b^{2}=5^{2}
$$

$$
\text { 10) } \begin{array}{ll}
\cos \theta=\frac{2 \sqrt{5}}{5} & 0^{\circ}<\theta<90^{\circ} \quad Q_{1} \\
& 0^{\circ}<\frac{\theta}{2}<45^{\circ} Q_{1} \\
\text { All Pos. }
\end{array}
$$

 $20+6^{2}=25$ $b^{2}=5$
$b=\sqrt{5}$
$\sin \frac{\theta}{2}=\sqrt{\frac{1-\cos \theta}{2}}$

$$
\sqrt{\frac{1-2 \sqrt{5} / 5}{2}}=\sqrt{\frac{\frac{5}{5}-\frac{2 \sqrt{5}}{5}}{2}}=\sqrt{\frac{\frac{5-2 \sqrt{5}}{5}}{2}}=\sqrt{\frac{5-2 \sqrt{5}}{5} \cdot \frac{1}{2}}=\sqrt{\frac{5-2 \sqrt{5}}{10}}
$$

$$
=\frac{\sqrt{5-2 \sqrt{5}}}{\sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{10}}=\frac{\sqrt{10(5-2 \sqrt{5})}}{10}=\frac{\sqrt{50-20 \sqrt{5}}}{10}
$$

$$
\begin{array}{ll}
\text { 11) } \cos \theta=-\frac{4}{5} & 90^{\circ}<\theta<180^{\circ} Q= \\
\sin \frac{\theta}{2}=\sqrt{\frac{1-\cos \theta}{2}} \quad 45^{\circ}<\frac{\theta}{2}<90^{\circ} Q 1 & \frac{5}{-4} \\
\sqrt{\frac{1-4 / 5}{2}}=\sqrt{\frac{5 / 5+4 / 5}{2}}=\sqrt{\frac{9 / 5}{2}}=\sqrt{\frac{9}{5} \cdot \frac{1}{2}}=\sqrt{\frac{9}{10}}=\frac{3}{\sqrt{10}} \cdot \sqrt{10} \\
\sqrt{10}
\end{array} \quad \begin{aligned}
& \frac{3 \sqrt{10}}{10}
\end{aligned}
$$

12)

$$
\begin{array}{r}
\cos \theta=-\frac{15}{17} \quad 180^{\circ}<\theta<270^{\circ} \\
90^{\circ}<\frac{\theta}{2}<135^{\circ}
\end{array}
$$

$$
\begin{aligned}
& \tan \frac{\theta}{2}=\frac{1-\cos \theta}{\sin \theta}=\frac{1-\left(-\frac{15}{17}\right)}{-8 / 17}=\frac{\frac{17}{17}+\frac{15}{17}}{-8 / 17}=\frac{32 / 17}{-8 / 17} \\
& =\frac{32^{4}}{17} \cdot \frac{-17}{8}=-4
\end{aligned}
$$

$$
\begin{array}{ll}
\text { 13) } \begin{array}{ll}
\tan x=-\frac{7}{24} \quad & \frac{3 \pi}{2}<x<2 \pi \\
\frac{3 \pi}{4}<\frac{x}{2}<\pi
\end{array} \quad\left|\frac{24}{25}\right|-7 \\
\cot \left(\frac{x}{2}\right) \Rightarrow \tan \left(\frac{x}{2}\right)=\frac{1-\cos x}{\sin x}=\frac{1-\frac{24}{25}}{\frac{-7}{25}}=\frac{\frac{25}{25}-\frac{24}{25}}{-\frac{7}{25}} \\
=\frac{\frac{1}{25}}{-7 / 25}=\frac{1}{25} \cdot \frac{-25}{7}=-\frac{1}{7} \text { so } \cot \left(\frac{x}{2}\right)=-7
\end{array}
$$

$$
\begin{array}{ll|ll}
\tan x=\frac{2}{1} & 0<x<\frac{\pi}{2} & \begin{array}{l}
5 / 12
\end{array} & \begin{array}{r}
2^{2}+1^{2}=c^{2} \\
5=c^{2}
\end{array} \\
& 0<\frac{x}{2}<\frac{\pi}{4} & \begin{array}{l}
1 \\
5
\end{array} & \begin{array}{ll}
1 & \text { All Posfive }
\end{array}
\end{array}
$$

$\sin \frac{x}{2}=\sqrt{\frac{1-\cos x}{2}}$

$$
\begin{aligned}
& \sqrt{\frac{1-1 / \sqrt{5}}{2}}=\sqrt{\frac{\frac{5}{5}}{\frac{\sqrt{5}}{\sqrt{5}}}} 2 \\
& 2
\end{aligned}=\sqrt{\frac{\frac{\sqrt{5}-1}{\sqrt{5}}}{2}}=\sqrt{\frac{\sqrt{5}-1}{\sqrt{5}} \cdot \frac{1}{2}}=\sqrt{\frac{\sqrt{5}-1}{2 \sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}}
$$

$$
\begin{aligned}
& \text { 17) } \sin x=-\frac{3}{5} \quad \frac{3 \pi}{2}<x<2 \pi \\
& \tan \frac{x}{2}=\frac{1-\cos x}{\sin x} \\
& =\frac{1-\frac{4}{5}}{-3 / 5}=\frac{\frac{5}{5}-\frac{4}{5}}{-3 / 5}=\frac{1 / 5}{-3 / 5}=\frac{1}{5} \cdot \frac{-5}{3}=-\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 18) } \cot x=\frac{-3 \sqrt{91}}{91} \text { ods } \frac{3 \pi}{2}<x<2 \pi \quad \left\lvert\, \begin{array}{c}
\text { opp } \\
\frac{3 \sqrt{91}}{4}
\end{array}\right. \\
& \sin \frac{x}{2}=\sqrt{\frac{1-\cos x}{2}} \\
& \sqrt{\frac{1-(3 \sqrt{91} / 10 \sqrt{91})}{2}}=\sqrt{\frac{1-\frac{3}{10}}{2}} \\
& =\sqrt{\frac{\frac{10}{10}-\frac{3}{10}}{2}}=\sqrt{\frac{\frac{7}{10}}{2}}=\sqrt{\frac{7}{10} \cdot \frac{1}{2}} \\
& =\sqrt{\frac{7}{20}}=\frac{\sqrt{7}}{\sqrt{20}}=\frac{\sqrt{7}}{2 \sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{\sqrt{35}}{10}
\end{aligned}
$$

22)

$$
\begin{aligned}
& 2) \begin{array}{l}
2 \sin \frac{x}{2}=\sin x \\
\left(2 \sqrt{\frac{1-\cos x}{2}}\right)^{2}=(\sin x)^{2} \\
2 \not x\left(\frac{1-\cos x}{2}\right)=\sin ^{2} x \\
2(1-\cos x)=\sin x^{2} \\
2-2 \cos x=1-\cos ^{2} x \\
\frac{-1+\cos ^{2} x}{\cos ^{2} x-2 \cos x+1=0} \\
(\cos x-1)(\cos x-1)=0 \\
\cos x-1=0 \quad \cos x=1 \quad x=0 \pi
\end{array}
\end{aligned}
$$

23) $\sin ^{2} \frac{x}{2}=\cos ^{2} \frac{x}{2}$

$$
\left(\sqrt{\frac{1-\cos x}{2}}\right)^{2}=\left(\sqrt{\frac{1+\cos x}{2}}\right)^{2}
$$

(2)

$$
\begin{align*}
& \frac{1-\cos x}{2}=\frac{1+\cos x}{2} \tag{2}\\
& 1-\cos x=1+\cos x \\
& +\cos x+\cos x \\
& 1=1+2 \cos x \\
& -1-1 \\
& 0=2 \cos x \\
& 0=\cos x
\end{align*}
$$

27) $\sqrt{\frac{1-\cos \frac{\pi}{9}}{2}} * \sin \frac{u}{2}= \pm \sqrt{\frac{1-\cos u}{2}}$

$$
\longleftrightarrow \sin \left(\frac{\pi / 9}{2}\right)=\sin \frac{\pi}{9} \cdot \frac{1}{2}=\sin \frac{\pi}{18}
$$

28)

$$
\begin{aligned}
& \frac{1-\cos 80^{\circ}}{\sin 80^{\circ}} * \tan \frac{u}{2}=\frac{1-\cos u}{\sin u} \\
& \left(\rightarrow \tan \frac{80^{\circ}}{2}=\tan 40^{\circ}\right.
\end{aligned}
$$

