la. $(x+1)^{2}+(y-3)^{2}=10$

$$
\begin{aligned}
& \text { center }=(-1,3) \\
& \text { radius }=\sqrt{10} \approx 3.16
\end{aligned}
$$

1.b. $\frac{(x-2)^{2}}{9}+\frac{y^{2}}{25}=1$
center: $(2,0)$
Co-Vastex: $(5,0)(-1,0)$ vertex: $(2,5)(2,-5)$
foci, $(2,4)(-2,-4)$
major are: 10

$$
\begin{aligned}
& c^{2}=a^{2}-b^{2} \\
& c^{2}=25-9 \\
& c^{2}=16 \\
& c=4
\end{aligned}
$$

minor arc: 6

$$
\text { 1.c. } \quad 16 x^{2}-9 y^{2}=144 \quad \frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

$$
c^{2}=a^{2}+b^{2}
$$

Carter: $(0,0)$

$$
c^{2}=9+16
$$

vertex: $(3,0)(-3,0)$

$$
c^{2}=25
$$

foci: $(5,0)(-5,0)$
asymptote: $y= \pm \frac{b}{a} x= \pm \frac{4}{3} x$

$$
c=5
$$

Horizontal Hyperbola.

$$
\begin{array}{lll}
\text { 1. d. } \quad \frac{(y-2)^{2}}{2}-\frac{(x+3)^{2}}{4}=1 \\
c^{2}=a^{2}+b^{2} & \text { center: }(-3,2) & \text { vertex }(-3,7)(-3,-3) \\
c^{2}=25+4 & \text { foci }(-3,2 \pm \sqrt{29}) & : 1 \\
c^{2}=29 & \text { asymptote: } & \\
c=\sqrt{29} & y-2= \pm \frac{5}{2}(x+3) & \\
c \approx 5,39 & &
\end{array}
$$

1.e. $(x+4)+(y-2)^{2}=0 \quad(y-2)^{2}=-(x+4) \quad$ Latus Rectum $=|-1|=1$
1.e. $(x+4)+(y-2)^{2}=0 \quad(y-2)^{2}=-(x+4)$

Vertex: $(-4,2)$
Foci: $\left(-4 \frac{1}{4}, 2\right)$
Diractrix: $x=-3 \frac{3}{4}$
Ends: $\left(-4 \frac{1}{4}, 1 \frac{1}{2}\right)\left(-4 \frac{1}{4}, 2 \frac{1}{2}\right)$

1.f. $\frac{4}{4}(y-1)^{2}=\frac{16}{4}(x-5) \quad(y-1)^{2}=4(x-5)$
vertex: $(5,1)$
Foci: $(6,1)$
Directris: $x=4$
Ende: $(6,3)(6,-1)$

2a.

$$
\begin{aligned}
& x^{2}+y^{2}-6 x-2 y+1=0 \\
& x^{2}-6 x+9+y^{2}-2 y+1=-1+9+1 \\
& (x-3)^{2}+(y-1)^{2}=9 \quad \text { Circle }
\end{aligned}
$$

2.6. $\quad 6 x^{2}-12=6 y^{2} \quad \frac{6 x^{2}-6 y^{2}}{12}=\frac{12}{12} \quad \frac{x^{2}}{2}-\frac{y^{2}}{2}=1$

Hyparbola
$2 . C$

$$
\begin{aligned}
& 9 x^{2}+4 y^{2}+54 x-16 y+61=0 \\
& 9 x^{2}+54 x+4 y^{2}-16 y=-61 \\
& 9\left(x^{2}+6 x+9\right)+4\left(y^{2}-4 y+4\right)=-61+81+16 \\
& \quad \frac{9(x+3)^{2}}{36}+\frac{4(y-2)^{2}}{36}=\frac{36}{36} \\
& \frac{(x+3)^{2}}{4}+\frac{(y-2)^{2}}{9}=1 \text { Ellipse }
\end{aligned}
$$

2.d.

$$
\begin{aligned}
& 9 x^{2}-4 y^{2}+36 x-8 y-40=0 \\
& 9 x^{2}+36 x-4 y^{2}-8 y=40 \\
& 9\left(x^{2}+4 x+4\right)-4\left(y^{2}+2 y+1\right. \\
& \frac{9(x+2)^{2}-4(y+1)^{2}}{72}=\frac{40}{72} \\
& \frac{(x-2)^{2}}{8}-\frac{7 y+1)^{2}}{18}=1
\end{aligned}
$$

2e. $x^{2}+x-y=5 \lll\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$

$$
\begin{aligned}
& x^{2}+x+\frac{1}{4}=y+5+\frac{1}{4} \\
& \left(x+\frac{1}{2}\right)^{2}=y+\frac{21}{4} \quad \text { Parabola }
\end{aligned}
$$

$3 a$

$$
\begin{aligned}
& (x-4)^{2}+(y-k)^{2}=r^{2} \\
& (x+2)^{2}+(y-3)^{2}=4^{2} \\
& (x+2)^{2}+(y-3)^{2}=16
\end{aligned}
$$

$3 b$

$$
\begin{array}{l|l}
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}-1 & \begin{array}{l}
a=4 \\
b=2 \\
\frac{(x-3)^{2}}{16}+\frac{(y+4)^{2}}{4}=1
\end{array}
\end{array}
$$

$3 c$

$$
\begin{gathered}
(x-h)^{2}+(y-k)^{2}=r^{2} \\
(2-1)^{2}+(-1-4)^{2}=r^{2} \\
1^{2}+(-5)^{2}=r^{2} \\
1+25=r^{2} \\
26=r^{2} \\
(x-1)^{2}+(y-4)^{2}=26
\end{gathered}
$$

3d. $\quad \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$

$$
\begin{aligned}
& \frac{(x-3)^{2}}{2^{2}}-\frac{(y-2)^{2}}{3^{2}}=1 \\
& \frac{(x-3)^{2}}{4}-\frac{(y-2)^{2}}{9}=1
\end{aligned}
$$

3e. $\quad \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$
$\frac{(x-4)^{2}}{2^{2}}+\frac{(y-1)^{2}}{1^{2}}=1$

$$
\frac{(x-4)^{2}}{4}+(y-1)^{2}=1
$$

3f. $\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$

$$
\begin{gathered}
\frac{(y-0)^{2}}{2^{2}}-\frac{(x-0)^{2}}{12}=1 \\
\frac{y^{2}}{4}-\frac{x^{2}}{12}=1
\end{gathered}
$$

39.

$$
\begin{aligned}
& (x-h)^{2}=4 p(y-k) \\
& (x-5)^{2}=4(4)(y-1) \\
& (x-5)^{2}=16(y-1)
\end{aligned}
$$

$4^{2}=2^{2}+b^{2}$
$16=4+b^{2}$
$12=b^{2}$

3h.

$$
\begin{aligned}
& (x-h)^{2}=4 p(y-k) \\
& (4-2)^{2}=4 p(2-1) \\
& 2^{2}=4 p(3) \\
& 4=4 p(3) \\
& \frac{4}{12}=\frac{12}{12} \\
& \left.p=\frac{1}{3}\right)
\end{aligned} \quad(x-2)^{2}=4\left(\frac{1}{3}\right)(y-1)
$$

$4 a$.

$$
\left.\begin{array}{l}
x^{2}+y^{2}=16 \\
x-y=4 \\
-y=-x+4 \\
y=x-4
\end{array} \quad\left\{\begin{array}{c}
\text { Conter }(0 ; 0) \\
r=4
\end{array}\right\} \begin{array}{l}
\text { Answer: } \\
(4,0) \\
(0,-4)
\end{array}\right]
$$

46

$$
(x+1)^{2}+(y-3)^{2}=1
$$

contes. $(-1,3) \quad r=1$

$$
\begin{aligned}
& x^{2}+y^{2}-4 x-5=0 \\
& x^{2}-4 x+4+y^{2}=5+4 \\
& (x-2)^{2}+y^{2}=9
\end{aligned}
$$

center: $(2,0) \quad r=3$

4C. $(x+1)^{2}+(y-1)^{2}=1$
$\operatorname{Covet}(-1,1) \quad r=1$

$$
(x-2)^{2}+(y-1)^{2}=4
$$

Conter $(2,1) r=2$

$5 a$

$$
\begin{aligned}
& x^{2}+y^{2}=5 \quad y=(-x+3) \\
& x^{2}+(-x+3)^{2}=5 \\
& x^{2}+(-x+3)(-x+3)=5 \\
& x^{2}+x^{2}-3 x-3 x+9=5 \\
& 2 x^{2}-6 x+9=5 \\
& 2 x^{2}-6 x+4=0 \\
& 2\left(x^{2}-3 x+2\right)=0 \\
& 2(x-2)(x-1)=0 \\
& x-2=0 \quad x-1=0 \\
& x=2 \quad x=1 \\
& y=-2+3 \quad y=-1+3 \\
& y=1 \quad y=2 \\
& (2,1) \quad(1,2)
\end{aligned}
$$

$5 b$.

$$
\begin{array}{r}
x^{2}+y^{2}-9=0 \\
x^{2}+y^{2}-4 x+3=0 \\
4 x-12=0 \\
4 x=12 x=3
\end{array}
$$

$$
3^{2}+y^{2}=9
$$

$$
9+y^{2}=9
$$

Answens $(3,0)$

$$
y^{\frac{1}{2}}=0
$$

$$
y=0
$$

56 $\quad 4 x^{2}+9 y^{2}-36 y=0 \quad x^{2}=(-9 y+27)$

$$
\begin{gathered}
4(-9 y+29)+9 y^{2}-36 y=0 \\
-36 y+108+9 y^{2}-36 y=0 \\
9 y^{2}-72 y+108=0
\end{gathered}
$$

$\left\{\begin{array}{l|l}y=6 & y=2 \\ x^{2}=-9(6)+27 & x^{2}=-9(2)+27 \\ x^{2}=-27 & x^{2}=9\end{array}\right.$

