Geometry

Radicals, Pyth. Thm., \& Special Right Triangles Quiz Review

Name: \qquad
Date: \qquad

PART I: Radicals

1. $\sqrt{63}=$
$\sqrt{9} \sqrt{7}$
$3 \sqrt{7}$
2. $-2 \sqrt{54}=$
$-2 \sqrt{9} \sqrt{6}$
$-2.3 \sqrt{6}$
3. $-6 \sqrt{121}=$
$-6 \cdot 11$
$1-66$
4. $\sqrt{72 x^{6} y^{9} z}=$
$\sqrt{36} \sqrt{2}$
$6 x^{3} y^{4} \sqrt{2 y z}$
5. $4 \sqrt{180 x^{9}}=$
$\sqrt{36} \sqrt{5}$
$4.6 \sqrt{5 x^{9}}$
$24 x^{4} \sqrt{5 x}$
6. $-3 \sqrt{28 x^{5} y^{3}}=$ $\sqrt{4} \sqrt{7}$
$-3.2 x^{4} y \sqrt{7 x y}$
$-6 x^{4} y \sqrt{7 x y}$
7. $5 \sqrt{220}=$
$5 \sqrt{4} \sqrt{55}$
$5.2 \sqrt{55}$
$10 \sqrt{55}$
8. $-3 \sqrt{44 x^{2} y^{11} z}=$ $\sqrt{4} \sqrt{11}$
$-3.2 x y \sqrt[5]{11 y z}$
$-6 x y^{5} \sqrt{11 y z}$
9. $\sqrt{3} \cdot \sqrt{7}=$

10. $2 \sqrt{6} \cdot \sqrt{6}=$
$11.4 \sqrt{2} \cdot 6 \sqrt{11}=$
$24 \sqrt{22}$
11. $5 \sqrt{12} \cdot \sqrt{8}=$ $5 \sqrt{96}$
$5 \sqrt{16} \sqrt{6}$
$5 \cdot 4 \sqrt{6}$
$20 \sqrt{6}$

$$
\begin{aligned}
& \text { 13. } \sqrt{2 a^{2}} \cdot \sqrt{30 a^{5}}= \\
& \sqrt{60 a^{7}} \\
& \sqrt{4 \sqrt{15}} \\
& 2 a^{3} \sqrt{15 a}
\end{aligned}
$$

14. $5 \sqrt{11 x y^{3}} \cdot 2 \sqrt{5 x^{2} y}=$
15. $-2 \sqrt{2}(3+\sqrt{2})=$
$-6 \sqrt{2}-2 \sqrt{4}$
$-6 \sqrt{2}-2(2)$
$-6 \sqrt{2}-4$
16. $\sqrt{15}(5 \sqrt{10}+\sqrt{6})=$

$$
\begin{aligned}
& 5 \sqrt{150}+\sqrt{90} \\
& 5 \sqrt{25} \sqrt{6}+\sqrt{9} \sqrt{10} \\
& 5 \cdot 5 \sqrt{6}+3 \sqrt{10} \\
& 25 \sqrt{6}+3 \sqrt{10}
\end{aligned}
$$

17. $\sqrt{\frac{180}{5}}=\sqrt{36}=6$
18. $\frac{8 \sqrt{11}}{26 \sqrt{2}}=\frac{\sqrt{11}}{2 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$

$$
=\frac{\sqrt{22}}{2 \cdot 2}=\frac{\sqrt{22}}{4}
$$

19. $\sqrt{\frac{30}{90}}=\sqrt{\frac{3}{9}}=\sqrt{\frac{\sqrt{3}}{3}}$
20. $\frac{-4 \sqrt{5}}{7 \sqrt{12}}=\frac{-4 \sqrt{5}}{14 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=$

$$
=-\frac{4 \sqrt{15}}{1.4 \cdot 3}
$$

$$
\begin{aligned}
& \text { Simplify } \\
& 7 \sqrt{12}
\end{aligned}=-4 \sqrt{15}=-2 \sqrt{15}
$$

24
$10 \times 10^{2}+24^{2}=x^{2}$
$100+576=x^{2}$

$$
\begin{array}{r}
676=x^{2} \\
x=24
\end{array}
$$

2.

$$
3^{2}+7^{2}=x^{2}
$$

$$
9+21=x_{2}^{2}
$$

5.

3.

$3^{2}+5^{2}=y^{2}$

$\begin{aligned} 5^{2}+9^{2} & =x^{2} \\ 25+81 & =x^{2} \\ 106 & =x^{2}\end{aligned} \quad x=\sqrt{106}$

For the following applications, make sure you draw a picture, show your work, and answer the question.
7. Two sides of a right triangle are 4 and 12 in .
a. Find the missing side if these are the lengths of the legs.
$4 \int_{12}^{x}$
$4^{2}+12^{2}=x^{2}$
$16+144=x^{2}$
$160=x^{2}$ $\left\{\begin{aligned} x & =\sqrt{110} \sqrt{10} \\ x & =4 \sqrt{10}\end{aligned}\right.$
b. Find the missing side if these are the lengths of a leg and hypotenuse.

8. The foot of a ladder is placed 6 feet from a wall. If the top of the ladder rests 8 feet up on the wall, how long is the ladder?

$$
\begin{aligned}
8^{2}+6^{2} & =x^{2} \\
64+36 & =x^{2} \\
100 & =x^{2} \\
x & =10
\end{aligned}
$$

9. John leaves school to go home. He walks 6 blocks North and then 8 blocks west. How far is John from the school?

$$
8^{2}+6^{2}=x^{2}
$$

$$
\begin{array}{r}
64+36=x^{2} \\
100=x^{2} \\
10 \text { blocks }
\end{array}
$$

10. A soccer field is a rectangle 90 meters wide and 120 meters long. The coach asks players to run from one corner to the corner diagonally across. What is this distance?

$90^{2}+120^{2}=x^{2}$
$8100+14400=x^{2}$
$22,500=x^{2}$
$x=150$

PART III: Find the value of each variable in radical form.
1.

2.

3.

$x=30 \quad y=30 \sqrt{2}$
$x=30 \sqrt{3} \quad y=15 \sqrt{3}$
\qquad
4.

5.

$\frac{6.48}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{48 \sqrt{3}}{3}=16 \sqrt{3}=100^{\circ}$

$$
x=23 \quad y=23 \sqrt{3}
$$

$$
x=37 \sqrt{2}
$$

$$
x=16 \sqrt{3} \quad y=32 \sqrt{3}
$$

8.

9.

$$
x=21 \sqrt{2} \quad y=21 \sqrt{2}
$$

$$
x=\frac{\frac{39 \sqrt{3}}{2}}{2} y=\frac{39}{2}
$$

$$
x=25 \quad y=25 \sqrt{2}
$$

10.

$x=30 \sqrt{3} \quad y=45$
11.

12.

$$
x=26 \sqrt{2} \quad y=26 \sqrt{2}
$$

$$
x=\frac{\frac{47}{2}}{2} y=
$$

$$
\frac{42 \sqrt{3}}{2}
$$

