Geometry
Unit 2 Agenda - Similar Figures PACKET \#2

DATE	DAY	LESSON	PAGES	HOMEWORK
$\begin{aligned} & \text { FRI } \\ & 8 / / 9 \end{aligned}$	2.1	Prerequisite Skills		
$\begin{aligned} & \text { MON } \\ & 8 / 22 \end{aligned}$		HALF DAY - Practice Activity		
$\begin{aligned} & \text { TUES } \\ & 8 / 23 \end{aligned}$	2.2	Parallel Lines Cut by a Transversal Intro		DeltaMath 2.1 Due 9/1
$\begin{aligned} & \hline \text { WED } \\ & 8 / 24 \\ & \hline \end{aligned}$	2.3	Parallel Lines Cut by a Transversal, Day 2 Activity		
$\begin{gathered} \text { THURS } \\ 8 / 25 \end{gathered}$	---	MATH INVENTORY		
$\begin{aligned} & \text { FRI } \\ & 8 / 26 \end{aligned}$	2.4	Ticket to the Party GLOW-IN-THE-DARK TRANSVERSAL PARTY!		
$\begin{aligned} & \text { MON } \\ & 8 / 29 \\ & \hline \end{aligned}$	2.5	Intro to Similarity		
$\begin{aligned} & \text { TUES } \\ & 8 / 30 \\ & \hline \end{aligned}$	2.6	Intro to Similarity, Day 2		
$\begin{aligned} & \text { WED } \\ & 8 / 31 \end{aligned}$	2.7	Review for Quiz!		Finish Quiz Review \& DM!
$\begin{gathered} \text { THURS } \\ \text { q//I } \end{gathered}$	2.8	QUIZ - Transversals \& Similarity		
$\begin{aligned} & \text { FRI } \\ & \mathrm{q} / 2 \end{aligned}$	2.9	Triangle Similarity	2-4	DeltaMath 2.2 due 9/12
$\begin{gathered} \text { MON } \\ \mathrm{q} / 5 \\ \hline \end{gathered}$	--	LABOR DAY	----------	
$\begin{aligned} & \text { TUES } \\ & 9 / 6 \\ & \hline \end{aligned}$	2.10	Triangle Similarity, Day 2	5-8	
$\begin{aligned} & \text { WED } \\ & \text { q/7 } \\ & \hline \end{aligned}$	2.11	Triangle Similarity Application	9-10	
$\begin{gathered} \text { THURS } \\ \text { q/8 } \\ \hline \end{gathered}$	2.12	Algebraic \& Similarity Proofs	11-12	
$\begin{aligned} & \text { FRI } \\ & \text { q/q } \end{aligned}$	2.13	Math Libs! Quiz Review!	13-15	Finish Quiz Review \& DM
$\begin{aligned} & \text { MON } \\ & \text { q/I2 } \end{aligned}$	2.14	QUIZ - Similar Triangles	----------	$\begin{gathered} \text { DeltaMath } 2.3 \\ \text { due } 9 / 19 \\ \hline \end{gathered}$
$\begin{aligned} & \text { TUES } \\ & \text { q/I3 } \end{aligned}$	2.15	Proportional Parts and Midsegments	16-17	
$\begin{aligned} & \text { WED } \\ & \text { q/14 } \end{aligned}$	2.16	Triangle Bisector Theorem \& Right Triangle Similarity Theorem	18-19	
$\begin{aligned} & \text { THURS } \\ & \text { q//5 } \end{aligned}$	2.17	Test Review Activity	$\begin{aligned} & \text { Test Review } \\ & 20-23 \end{aligned}$	
$\begin{aligned} & \text { FRI } \\ & \text { q/I6 } \end{aligned}$	2.18	4-3-2-1 Test Review	$\begin{aligned} & \text { Test Review } \\ & 20-23 \end{aligned}$	Finish Test Review \& DM
$\begin{aligned} & \text { MON } \\ & \mathrm{q} / \mathrm{Iq} \end{aligned}$	2.19	TEST TODAY!!!! GOOD LUCK!!!		

Geometry - DAY 2.9
AA, SSS, and SAS Similarity

Name: \qquad
Date \qquad

There are three ways to prove that two triangles are similar:

1. \qquad
2. \qquad
3. \qquad

Angle-Angle Similarity Postulate (AA~)

If two \qquad of one triangle are congruent to two \qquad of another triangle,
then the triangles are \qquad .

WE SAY \triangle ABC $\sim \Delta$ \qquad BY AA~.
What do you know about $\angle \mathrm{C}$ and $\angle \mathrm{F}$? Why?

What do you know about the corresponding sides? \qquad
Why? \qquad

Side-Side-Side Similarity (SSS ~)

If three \qquad of one triangle are proportional to three corresponding \qquad of another triangle, then the triangles are similar.

Since $2 / 4=3 / 6=4 / 8$, then $\triangle A B C \sim \triangle D E F$.

Side-Angle-Side Similarity (SAS~)

If two sides of one triangle are proportional to two sides of another triangle and their
\qquad are congruent, then the triangles are similar.

Since $2 / 4=3 / 6$ and $\angle B \cong \angle E$, then $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$.

Classwork! Determine if the triangles are similar. If they are, complete the similarity statement.

1. $\Delta \mathrm{GHJ} \sim \Delta$
by \qquad
2. $\triangle \mathrm{ABC} \sim \Delta$
by \qquad

3. $\Delta \mathrm{TUV} \sim \Delta$ \qquad

4. $\Delta \mathrm{JKL} \sim \Delta$
by \qquad

5. $\Delta \mathrm{PQR} \sim \Delta$ \qquad

Verify that the triangles are similar, then solve for the variables.
6. Δ^{\sim} \qquad
$x=$ \qquad $y=$ \qquad

7. $\Delta \sim$ \qquad

$\mathrm{x}=$ \qquad $y=$ \qquad z = \qquad
8. $\Delta Q T R \sim \Delta$ \qquad by \qquad

Triangle Similarity

Page 4

Geometry - DAY 2.10
Triangle Similarity, Day 2

Name: \qquad
Date: \qquad
Try these four problems - they walk you through how to solve them!
Are these triangles similar? If so, state the similarity statement. If they are not similar, just write "not similar."
1.

A. Find any congruent angles. Mark them.
\{Since you have parallel lines, think of transversal angle pairs like corresponding angles...\}
B. Now, are the triangles similar? YES or NO
C. If so, state how: \qquad
D. $\Delta V W X \sim \Delta$ \qquad

A. Can you find the missing angles? Mark them.
B. Are the triangles similar? YES or NO
C. If so, state how: \qquad
D. $\triangle L M N \sim \Delta$ \qquad
4.

A. Are the sides proportional?

Set up your ratios HERE:
B. Are the triangles similar? YES or NO
C. If so, state how: \qquad
D. $\Delta \mathrm{KCS} \sim \Delta$ \qquad

CLASSWORK! Remember - you need to SHOW WORK when you are figuring out if the sides of the two triangles are proportional. Also, make sure you mark any congruent angles if possible. If they are not similar, just write "not similar."
1.

A. Are these triangles similar? YES or NO
B. If so, state how: \qquad
c. \triangle TRE $\sim \Delta$ \qquad
3.

A. Are these triangles similar? YES or NO
B. If so, state how: \qquad
C. $\Delta T Q W \sim \Delta$ \qquad

A. Are these triangles similar? YES or NO
B. If so, state how: \qquad
C. $\triangle S P D \sim \Delta$ \qquad
2.

A. Are these triangles similar? YES or NO
B. If so, state how: \qquad
C. $\triangle K E A \sim \Delta$ \qquad
4. *there are two possible methods for this one*

A. Are these triangles similar? YES or NO
B. If so, state how: \qquad
C. $\Delta I C N \sim \Delta$ \qquad
6.

A. Are these triangles similar? YES or NO
B. If so, state how: \qquad
c. $\triangle E D F \sim \Delta$ \qquad

Geometry - DAY 2.10
Classwork - Triangle Similarity

Name: \qquad
Date: \qquad
Write the congruence statement for the similar triangles below.

$\triangle C A B \sim \Delta$
2.

$\triangle A B E \sim \Delta$ \qquad

Determine if the two triangles are similar. If they are, state how and the similarity statement.
Remember, you must mark any congruent angles you can add and you must show work for proportional

A. Are these triangles similar? YES or NO
A. Are these triangles similar? YES or NO
B. If so, state how: \qquad B. If so, state how: \qquad
C. \triangle WAY $\sim \Delta$ \qquad c. $\triangle A B E \sim \triangle$ \qquad
5.

A. Are these triangles similar? YES or NO
A. Are these triangles similar? YES or NO
B. If so, state how: \qquad B. If so, state how: \qquad
C. $\triangle C B E \sim \triangle$ \qquad C. $\triangle A B C \sim \Delta$ \qquad

A. Are these triangles similar? YES or NO
B. If so, state how: \qquad
C. \triangle EDF $\sim \Delta$ \qquad
9.

A. Are these triangles similar? YES or NO
B. If so, state how: \qquad
C. \triangle LNP $\sim \Delta$ \qquad
11.

A. Are these triangles similar? YES or NO
B. If so, state how: \qquad
C. $\triangle L M N \sim \Delta$ \qquad
8.

A. Are these triangles similar? YES or NO
B. If so, state how: \qquad
C. $\triangle D G E \sim \Delta$ \qquad
10.

A. Are these triangles similar? YES or NO
B. If so, state how: \qquad
C. $\triangle A B E \sim \triangle$ \qquad
12.

A. Are these triangles similar? YES or NO
B. If so, state how: \qquad
c. Δ TUV $\sim \Delta$ \qquad

Geometry - DAY 2.11
Video Notes - Applications of Similar Triangles

Name: \qquad
Date: \qquad

Using Shadows to Find Heights

Suppose you want to use the shadow method to estimate the height of a building. You make the following measurements:

- length of the stick: 3 m
- length of the stick' 6 shadow: 1.5 m
- length of the building's shadow: 8 m

Using Mirrors to Find Heights

Jim wants to find the height of the traffic light.

These angles are congruent because light reflects off a mirror at the same angle it arrives.

CLASSWORK:

1. If a tree casts a 24 -foot shadow at the same time that a yardstick casts a 2 -foot shadow, find the height of the tree.

2. A bush is sighted on the other side of a canyon. Find the width of the canyon.

3. Ramon places a mirror on the ground 45 ft from the base of a geyser. He walks backward until he can see the top of the geyser in the middle of the mirror. At that point, Ramon's eyes are 6 ft above the ground, and he is 7.5 ft from the mirror. Use similar triangles to find the height of the geyser.

4. The Giant Wheel at Cedar Point in Ohio is one of the tallest Ferris wheels in the country at 136 feet tall. If the Giant Wheel casts a 34 -foot shadow, write and solve a proportion to find the height of a nearby man who casts a 1.5 -foot shadow.
5. What is the height of the building?

6. You use a mirror to estimate the height of the dinosaur skeleton. According to the laws of optics, the light reflects off a mirror at the same angle from which it strikes the mirror. How tall is the dinosaur?

7. Lamar Presley is planning to landscape his yard. First he needs to calculate the height of a palm tree in the backyard. He sights the top of the tree in a mirror that is 6.0 meters from the tree. It is on the ground and faces up. Lamar is 0.9 meters from the mirror and his eyes are 1.8 meters from the ground. How tall is the tree?

These angles are congruent because light reflects off a mirror at the same angle it arrives.

Geometry - DAY 2.12
Proofs of Similar Triangles

Name: \qquad
Date: \qquad
Determine if the triangles in each pair are similar and state the property used to prove similarity.

$\Delta \mathrm{BKL} \sim \Delta$ \qquad by \qquad
$\Delta \mathrm{RSQ} \sim \Delta$ \qquad by \qquad
$\Delta C B D \sim \Delta$ \qquad by \qquad Δ CUD~ Δ \qquad by \qquad
5. Given: $\angle S \cong \angle W$ Prove: $\triangle S U V \sim \triangle W T$

Statement	Reason	
1.	1.	
2.	2.	
3.	3.	

6. Given: $\angle A \cong \angle B$ Prove: $\triangle A C E \sim \triangle B C D$

	Statement	Reason
B	1.	1.
$A<1>D$	2.	2.
$-\rangle_{E}$	3.	3.

7. Given: $\overline{M Q} \| \overline{O P}$ Prove: $\triangle M N Q \sim \Delta P N O$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

8. Given: $\angle \mathrm{G} \cong \angle \mathrm{K}$, and $\angle \mathrm{I} \cong \angle \mathrm{L}$

Prove: $\triangle \mathrm{GHI} \sim \Delta \mathrm{KJL}$

Statements	Reasons
1. $\angle \mathrm{G} \cong \angle \mathrm{K}$	1.
2.	2. Given
3. $\triangle \mathrm{GHI} \sim \triangle \mathrm{KJL}$	3.

9.

Given: $\frac{M N}{P Q}=\frac{N O}{Q R}, \angle N \cong \angle Q$

Prove: $\triangle M N O \sim \triangle P Q R$

Statements	Reasons
1. $\frac{M N}{P Q}=\frac{N O}{Q R}$	1.
2.	2. Given
3. $\triangle M N O \sim \triangle P Q R$	3.

10. Given: $\overline{\mathrm{AE}} \| \overline{\mathrm{BD}}$

Prove: $\triangle \mathrm{ACE} \sim \triangle \mathrm{BCD}$		
Statements	Reasons	
$1 . \overline{\mathrm{AE}} \\| \overline{\mathrm{BD}}$	1.	
2.	2. Corresponding Angles	
3.	3.	
4.	4. AA	

11. Given: $\overline{\mathrm{MQ}} \| \overline{\mathrm{OP}}$

Prove: $\triangle M Q N \sim \triangle O P N$

Statements	Reasons	
1. $\overline{\mathrm{MQ}} \\| \overline{\mathrm{OP}}$		
2. $\angle \mathrm{QMN} \cong \mathrm{OPN}$	1.	
3.	3. Alternate Interior	
4. $\triangle \mathrm{MQN} \sim \triangle \mathrm{OPN}$	4.	

\qquad
Quiz Review - Similar Triangles
Date \qquad Period

State if the triangles in each pair are similar. If so, state how you know they are similar and complete the similarity statement. If you have to prove that sides are proportional, make sure to show your work!

$\triangle A B C \sim$
3)

$\triangle F G H \sim$ \qquad
5)

$\triangle F G H \sim$ \qquad
2)

$\triangle Q R S \sim$ \qquad
4)

$\triangle U T S \sim$ \qquad
6)

$\triangle V U T \sim$ \qquad
7)

8)

$\triangle T U V \sim$
Find the missing length. The triangles in each pair are similar.
9) $\triangle E D C \sim \triangle E S R$

10) $\triangle E F G \sim \triangle E Q R$

Solve for x. The triangles in each pair are similar.
11) $\triangle N M L \sim \triangle P Q R$

12) $\triangle K L M \sim \triangle F E D$

Find the measure of each angle indicated.
13)

14)

Solve for \boldsymbol{x}.
15)

16)

The polygons in each pair are similar. Find the missing side length.
17)

18)

Solve for \boldsymbol{x}. The polygons in each pair are similar.
19)

20)

21. Given: $\overline{M N} \| \overline{K L}$ Prove: $\triangle M N \sim \Delta K K$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

22.

Given: $\angle S \cong \angle V$

Prove: \triangle STX \sim VUT

Statements	Reasons
1.	1. Given
2. $\angle \mathrm{STX} \cong \angle \mathrm{UTV}$	2.
3.	3.

Geometry - DAY 2.15
Name: \qquad
Video Notes: Proportion Parts and Midsegments of Triangles Date: \qquad

Proportional Parts of Triangles

- In any triangle, a line \qquad to one side of a triangle separates the other two sides \qquad .
- The converse is also true.

If $\overleftrightarrow{X Y} \| \overleftrightarrow{R S}$, then $\frac{R X}{X T}=\frac{S Y}{Y T}$. If $\frac{R X}{X T}=\frac{S Y}{Y T^{\prime}}$, then $\overleftrightarrow{X Y} \| \overleftrightarrow{R S}$.

$$
\frac{\text { Part }}{\text { Part }}=\frac{\text { Part }}{\text { Part }} \text { OR Part } \frac{\text { Part }}{W \text { hole }}=\frac{\text { Whole }}{\text { Par }}
$$

Midsegment of a Triangle

A \qquad of a triangle is a segment joining the midpoints of the two sides of a triangle.

\qquad is a midsegment of $\triangle A B C$

Triangle Midsegment:

1. \qquad
2. \qquad
3. \qquad

$$
\begin{gathered}
\overline{A B} \| \overline{X Y} \\
X Y=\frac{1}{2} A B \text { or } A B=2(X Y)
\end{gathered}
$$

CLASSWORK Proportional Parts Practice:
1.

2.

3.

4.

5.

6.

7.

8.

CLASSWORK Midsegments Practice:

1. Given $D E$ is the length of the midsegment. What is its length?

2. Given $D E$ is the length of the midsegment. Find $A B$.

3. Solve for x and y.

4. Solve for x.

Geometry - DAY 2.16
Triangle Bisector \& Right Triangle Similarity Theorems

Name: \qquad
Date: \qquad

WARM-UP:

1. Solve for the?

2. Solve for x.

3. $X Y=$

4. Solve for x .

Triangle Bisector Theorem:
the \qquad of any angle inside a triangle divides the opposite side into two parts
\qquad to the other two sides of the triangle which contain the angle.

Let's Try!
1.

2.

9

You're Turn!!
3.

4.

5.

Right Triangle Similarity Theorem:

If the \qquad is drawn to the hypotenuse of a right triangle, then the two triangles formed are \qquad to the original triangle and to each other.

Geometric Mean Theorem: In a right triangle, if the altitude drawn from the right angle to the hypotenuse divides the hypotenuse into two segments, then the length of the altitude is the geometric mean of the lengths of the two segments.

$$
\frac{a}{x}=\frac{x}{b}
$$

Let's Try!!

2.

You're Turn!!
3.

4.

5.

Geometry - DAY 2.17

Test Review - Similar Figures

Name: \qquad
Date: \qquad

1. Given that $\triangle M A X \sim \Delta I Z Y$. Complete the following:
a. $\angle \mathrm{M} \cong$ \qquad b. $\frac{A X}{Z Y}=\frac{X M}{}$
c. $\angle Z \cong$ \qquad d. $\Delta Z I Y \cong$
2. Given $\triangle L M N \sim \triangle P Q R$. Complete the following:
a. Scale factor of $\triangle L M N$ to $\triangle P Q R$. \qquad
b. $Q R=$ \qquad and $P R=$ \qquad .

c. What is the ratio of the perimeters? \qquad
d. If $\mathrm{m} \angle \mathrm{P}=40^{\circ}$ and $\mathrm{m} \angle \mathrm{Q}=115^{\circ}$, then $\mathrm{m} \angle \mathrm{R}=$ \qquad $\mathrm{m} \angle \mathrm{L}=$ \qquad and $\mathrm{m} \angle \mathrm{M}=$ \qquad
3. If two polygons are similar, the ratio of their areas is equal to the \qquad of the scale factor.
4. Write a similarity statement.

5. Which theorems are used to prove that two triangles are similar?
6. Are the following pairs of triangles similar? If they are, then name their similarity criteria. (SSS~, SAS~, AA~)
a) Yes/No \qquad

b) Yes / No \qquad

c) Yes / No \qquad

d) $\mathrm{Yes} / \mathrm{No}$

e) Yes / No \qquad

f) Yes / No \qquad

7. Find x and the length of the missing sides in the diagram below.

8. Finding the distance across a canyon can often be difficult. A drawing of similar triangles can be used to make this task easier. Use the diagram to determine $\overline{\mathrm{AR}}$, the distance across the canyon.

9. To measure $\overline{\mathrm{BC}}$, the distance across a crater, an archaeologist stands at point A and locates points B, C, D, and E. What is the distance across the crater?

10. Rebecca is 5 feet 5 inches tall and is standing near the Space Needle in Seattle, Washington. She casts a 13 inch shadow at the same time that the Space Needle casts a 121 foot shadow. How tall is the Space Needle?
11. Find x.

12. Find x.

13. Davis, Broad, and Main Streets are parallel. Find x.

14. Find the value of x.

15. Find x, y, and z.

16. Find the length of the midsegment.

For numbers $18-25$, name the angle pair, whether they are congruent or supplementary, and then solve for x or the missing angle.
18.

20.

19.

21.

22.

24.

26. Given: $\overline{\text { EEIABD }}$

Prove: $\triangle A C E \sim \triangle B C D$

Statements	Reasons
1)	1)
2)	2)
3)	3)
4)	4)

28. Solve for the ?

29. Solve for x.

30.

25.

27. Given: $\frac{M N}{P N}=\frac{Q N}{O N}$

Prove: $\triangle M Q N \sim \triangle O P N$

Statements	Reasons
1)	1)
2)	2)
3)	3)

30. Solve for x.

31. Solve for x.

