GEOMETRT 2022

ONOT Y TEEDDA - TRADSFORMOTJODS

DATE	DAY	LESSON	PAGES	HOMEWORK
$\begin{gathered} \text { MON } \\ 8 / 1 \end{gathered}$		Welcome to Geometry! Getting to know you!		Create DeltaMath login
$\begin{aligned} & \text { TUES } \\ & 8 / 2 \end{aligned}$	1.1	Graphing Points	2-5	DeltaMath HW 1.1 Due $8 / 11$ @ 8:20 AM before quiz
$\begin{gathered} \text { WED } \\ 8 / 3 \end{gathered}$	1.2	Translations	6-9	
$\begin{gathered} \text { THUR } \\ 8 / 4 \end{gathered}$	1.3	Reflections, Day 1	10-12	
$\begin{aligned} & \text { FRI } \\ & 8 / 5 \end{aligned}$	1.4	Reflections, Day 2	13-15	
$\begin{gathered} M O N \\ 8 / 8 \end{gathered}$	1.5	Activity - Translations \& Reflections	------------	
$\begin{gathered} \text { TUES } \\ 8 / 9 \end{gathered}$	1.6	Rotations	16-17	
$\begin{aligned} & \text { WED } \\ & 8 / 10 \end{aligned}$	1.7	Review for Quiz Transformations Partner Activity	18-19	Finish Quiz Review \& DM due TOMORROW
THURS 8/11	1.8	QUIZ Intro to Geo \& Transformations	------------	DeltaMath HW 1.2 Due 8/18 @ 8:20 AM before test
$\begin{gathered} \text { FRI } \\ 8 / 12 \end{gathered}$	1.9	Dilations	20-22	
MON 8/15	1.10	Composition of Transformations	23-25	
$\begin{aligned} & \text { TUES } \\ & 8 / 16 \end{aligned}$	1.11	Test Review - Task Cards	$27-29$ Test Review	
$\begin{aligned} & \text { WED } \\ & 8 / 17 \end{aligned}$	1.12	Warm Up \& Test Review	$26-29$ Test Review	Finish Test Review \& DM due TOMORROW
THURS 8/18	1.13	TEST TODAY!!!! GOOD LUCK!!!	------------	

Agenda is subject to change!!!

Geometry

Coordinate Plane \& Graphing Notes
Name: \qquad

X-Axis:

Y-Axis:

Origin:

Quadrants:

Ordered Pair:

Plot the points on the graph. Label each point and tell what quadrant/axis it falls into.

A $(1,3)$ Quadrant: ____
B $(-1,-3)$ Quadrant: \qquad
C $(1,-3)$ Quadrant: \qquad
D $(-1,3)$ Quadrant: \qquad
E $(0,8)$ Axis: \qquad
F $(8,0)$ Axis: \qquad

Write the coordinates of each point on the graph. Tell what quadrant/axis it falls into.

A \qquad G \qquad Quadrant: \qquad
B \qquad Quadrant: \qquad H \qquad Quadrant: \qquad
C \qquad Quadrant: \qquad । \qquad Quadrant: \qquad
D \qquad Quadrant: \qquad
E \qquad Quadrant: \qquad
J \qquad Quadrant: \qquad
K \qquad Quadrant: \qquad
F \qquad Quadrant: \qquad
L \qquad Quadrant: \qquad

PUTTING IT ALL TOGETHER

1. Which point is located on the origin?
2. Which point is on the x-axis (not including the point on the origin)?
3. Which point is located at $(-6,-2)$?
4. Which point is in Quadrant IV?
5. Plot point H at $(4,-4)$.
6. Plot point J at $(-3,0)$.
7. What are the coordinates of point F ?
8. What are the coordinates of point D ?

Geometry
Translations

Name: \qquad
Date: \qquad

Transformation: The \qquad or \qquad , of all points of a figure in a plane according to a common operation, such as translation, reflection or rotation.

Pre-image: A figure \qquad a transformation has taken place.

Image: The figure that results \qquad a transformation.

Isometry: A transformation that preserves \qquad .

If the preimage has point A, the image has point A. A^{\prime} is read as "A prime"

- A \qquad is a transformation where all the points of a figure are moved the same \qquad in the same \qquad
- The distance and direction are indicated by a ray called the
\qquad
\qquad .

- A vector is a quantity that has both \qquad and \qquad , and can be thought of as a line with a starting point and an endpoint.
- A translation is an \qquad so the image of a translated figure is
\qquad to the preimage.

Tell whether each transformation appears to be a translation and explain.

Iranslations in the Coordinate Plane

Often the rule for the translation will be given as $(x, y) \rightarrow(x+a, y+b)$. This is a shift a units horizontally in the x-direction and b units vertically in the y-direction.

For example, in the coordinate plane to the right shows the translation $(x, y) \rightarrow(x+4, y-2)$ shifts each point 4 units to the right and 2 units down.

Drawing Translations in the Coordinate Plane

Translate the figure with the given vertices using the rule.

What about this notation? These are called vectors!
8. $\langle 2,3\rangle$

9. $\langle-4,0\rangle$

Geometry
Classwork - Translations

1. Which is the image and which is the pre-image (1 or 2)? Pre-image \qquad Image \qquad
Name: \qquad
Date: \qquad

2. $(x, y) \rightarrow(x+3, y-5)$

3. $\langle-4,4\rangle$

4. $\langle 0,8\rangle$

5. $(x, y) \rightarrow(x-4, y)$

6. Use the translation $(x, y) \rightarrow(x+5, y-9)$ for the questions below.

What is the translation vector? \qquad
What is the image of $A(-6,3)$? \qquad What is the image of $B(4,8)$? \qquad
What is the image of A^{\prime} from above, which would be called $A^{\prime \prime}$? \qquad
What is the pre-image of $K^{\prime}(12,7)$? \qquad (*Think about this - you want to find K)
7. If the vertices of $\triangle A B C$ are $A(-6,-7), B(-3,-1)$, and $C(5,2)$, find the vertices of $\triangle A^{\prime} B^{\prime} C$ after each of the translations below.
a. $\quad(x, y) \rightarrow(x-2, y-7) \quad A^{\prime}=$ \qquad ,
$B^{\prime}=$ \qquad ,
$C^{\prime}=$ \qquad
b. $(x, y) \rightarrow(x, y-3)$
$A^{\prime}=$ \qquad ,
$B^{\prime}=$ \qquad , $C^{\prime}=$ \qquad
c. $(x, y) \rightarrow(x+5, y+8) \quad A^{\prime}=$ \qquad ,
$B^{\prime}=$ \qquad , $C^{\prime}=$ \qquad
8. Find the translation RULE between the pre-image and the image.
a.

$(x, y) \rightarrow$ \qquad
b.

$(x, y) \rightarrow$ \qquad

$(x, y) \rightarrow$
9. $A(-4,-4), B(-2,-3), C(-1,3)$;
$(x, y) \rightarrow(x+5, y)$

11. $A(2,1), B(-2,0), C(3,-2)$;
$(x, y) \rightarrow(x+2, y+1)$

10. $R(-3,1), S(-2,3), T(2,3), U(3,1)$;
. $\langle 0,-4\rangle$

12. $A(-1,0), B(3,-1), C(1,-2), D(0,-2)$;
.$\langle-1,5\rangle$

Geometry
Name: \qquad

Date: \qquad

A \qquad is a transformation where each point in a shape appears at an
\qquad distance on the opposite side of a given line, called the
\qquad Reflection through line ℓ
It preserves \qquad so it is an \qquad .

Each point in the preimage will move \qquad the distance from the line of reflection along a line that is \qquad to the line of reflection.

X-AXIS REFLECTION

Pre-Image	Image
$\mathrm{F}:(-3,7)$	$\mathrm{F}^{\prime}:$
$\mathrm{E}:(0,-4)$	$\mathrm{E}^{\prime}:$
$\mathrm{B}:(2,3)$	$\mathrm{B}^{\prime}:$

When reflecting across the x-axis what coordinate changes and how? \qquad
What coordinate stays the same? \qquad
\qquad

Y-AXIS REFLECTION

Pre-Image	Image
F: $(-3,7)$	$F^{\prime}:$
E: $(0,-4)$	$\mathrm{E}^{\prime}:$
B: $(2,3)$	$\mathrm{B}^{\prime}:$

When reflecting across the y-axis what coordinate changes and how? \qquad What coordinate stays the same? \qquad So, $(x, y) \rightarrow$ \qquad .

[^0]\qquad .

Let's Try! Reflect the given figure across the given axis.

1. Reflect across the x-axis.

2. Reflect across the y-axis.

3. Reflect across the y-axis.

What if the line of reflection is not the x - or y-axis?

Ex 1. Reflection across $x=-1$

Ex 2. Reflection across $y=1$

Your Turn! Reflect the figure over the given line of reflection.

1. Reflect across $x=0$

2. Reflect across $y=2$

3. Reflect across $x=2$

Geometry
Classwork - Reflections, Day 1

Name: \qquad Date: \qquad

Tell whether each transformation appears to be a reflection and explain.
1.

2.

3.

4.

Write the line of reflection for the following graphs.
5. \qquad 6. \qquad -
7. \qquad 8. \qquad

Reflect the given figure across the given axis.

9. Reflect across the x-axis.

10. Reflect across $x=-2$.

11. Reflect across the y-axis.

12. Reflect across $y=2$.

13. Reflect across $y=-1$.

14. Reflect across the x-axis.

Geometry
Reflections, Day 2

Name: \qquad
Date: \qquad

When reflecting a point in the line $y=x$, what happens to the coordinates? \qquad So, (x, y) becomes \qquad .

Line of Reflection: $y=-x$

Pre-Image	Image
J $(-3,7)$	J^{\prime}
A $(0,-4)$	A^{\prime}
N $(2,3)$	N^{\prime}

When reflecting a point in the line $y=-x$, what happens to the coordinates? \qquad
So, (x, y) becomes \qquad .

Ex. 1 Reflect over $y=-x$.

Ex. 2 Reflect over y = x.

Ex. 3 Reflect over $y=x$.

Geometry
 Classwork - ALL Reflections

Name: \qquad

For \# $1-6$, draw the triangle after each transformation and give the coordinates of A^{\prime}, B^{\prime} and C^{\prime}.

1. Reflect the triangle over the y-axis.

2. Reflect the triangle over $y=x$.

3. Reflect the triangle over the x-axis and then over $y=x$.

4. Reflect the triangle over the x-axis.

5. Reflect the triangle over $y=-x$.

6. Reflect the triangle over $x=-2$.

Complete.
7. After a reflection over the line $y=x,(8,11)$ is the image of point C. What is the original location of point C ?
8. After a reflection over the y-axis, $(0,4)$ is the image of point L. What is the original location of point L ?
9. The reflection of $J(-1,11)$ is $J^{\prime}(-1,-11)$. What is the reflection of $D(5,-5)$ if the point is reflected across the same line?
What is the line of reflection?
10. The reflection of $K(-2,8)$ is $K^{\prime}(8,-2)$. What is the reflection of $L(10,-3)$ if the point is reflected across the same line?
What is the line of reflection?
11. Given triangle JBN with coordinates $\mathrm{J}(4,5), \mathrm{B}(-1,-7)$, and $\mathrm{N}(-7,8)$, find the image of point B after a reflection over the line $y=x$.
12. After a reflection over the x-axis, $(5,10)$ is the image of point N. What is the original location of point N ?
13. Given triangle ONA with coordinates $\mathrm{O}(-4,1), \mathrm{N}(11,-12)$ and $\mathrm{A}(-7,-9)$, find the image of point O after a reflection over the x-axis.
14. Given triangle UCJ with coordinates $\mathrm{U}(-12,7), \mathrm{C}(4,2)$, and $\mathrm{J}(-3,9)$, find the image of point C after a reflection over the y-axis.
15. The reflection of $\mathrm{H}(-10,-11)$ is $\mathrm{H}^{\prime}(10,-11)$. What is the reflection of $\mathrm{N}(8,10)$, if the point is reflected across the same line?
What is the line of reflection?

Geometry
Rotations

Name: \qquad

ROTATION: A \qquad that turns a figure about a fixed point through a given angle and given direction. The amount of rotation is called the \qquad of \qquad and it is measured in degrees. Figures can be rotated \qquad or
\qquad . The rotations we are going to focus on are 90 degrees clockwise, 90 degrees counterclockwise, and 180 degrees around the origin.

ROTATIONS:

qO degrees clockwise: $(x, y) \rightarrow(y,-x)$ qo degrees counterclockwise: $(x, y) \rightarrow(-y, x)$ 180 degree rotation: $(x, y) \rightarrow(-x,-y)$

Let's Try! ROTATE 90 DEGREES CLOCKWISE about the origin! (270 degrees CCW)

Let's Try! ROTATE 180 DEGREES about the origin!
3.

ROTATE 90 DEGREES COUNTERCLOCKWISE about the origin! (270 degrees CW)
2.

Write the degree and direction of the rotation below!
4.

5.

If the vertices of $\triangle A B C$ are $A(0,5), B(-4,2)$, and $C(10,-6)$, find the vertices of $\Delta A^{\prime} B^{\prime} C$ after each of the translations below.
a. $(x, y) \rightarrow(-y, x) \quad A^{\prime}=\quad B^{\prime}=$ \qquad $C^{\prime}=$ \qquad Transformation: \qquad
b. $(x, y) \rightarrow(y,-x) \quad A^{\prime}=$ \qquad $B^{\prime}=$ \qquad $C^{\prime}=$ \qquad Transformation: \qquad
c. $(x, y) \rightarrow(-x,-y) \quad A^{\prime}=$ $B^{\prime}=$ \qquad $C^{\prime}=$ \qquad Transformation: \qquad

Geometry
Classwork - Rotations

Name: \qquad
Date: \qquad

1. Rotate 180 degrees.

2. Rotate 90 degrees CCW.

Write the degree and direction of the rotation shown below!
1.

2.
3.

4. \qquad

3. \qquad
4. Rotate 180 degrees.

EVERYTHING! Write the translation vector, line of reflection, or direction and degree of rotation!
1.

2.

3.

4.

\qquad

1. Use the translation $(x, y) \rightarrow(x-4, y+8)$ for questions $a-d$.
a. What is the translation vector? \qquad
b. What is the image of $A(-5,-4)$? \qquad
c. What is the image of $A^{\prime \prime}$ (use part b)? \qquad
d. What is the pre-image of $B^{\prime}(14,8)$? \qquad

Write the translation vector, line of reflection, or degree \& direction of rotation for the following graphs.
2.

3.

4.

5. Write your rules for the following transformations:
a. Translation right h units and down k units: $\quad(x, y) \rightarrow$
b. Reflection over the x-axis: $\quad(x, y) \rightarrow$
c. Reflection over the y-axis: $\quad(x, y) \rightarrow$
d. Reflection over the line $y=x: \quad(x, y) \rightarrow$
e. Reflection over the line $y=-x: \quad(x, y) \rightarrow$ \qquad
f. Rotation 90 degrees CW: $\quad(x, y) \rightarrow$
g. Rotation 90 degrees CCW: $\quad(x, y) \rightarrow$ \qquad
h. Rotation 180 degrees: $(x, y) \rightarrow$ \qquad
6. The vertices of $\triangle A B C$ are $A(2,-4), B(0,6)$, and $C(-5,3)$. Find the vertices of $\triangle A^{\prime} B^{\prime} C^{\prime}$ given the transformation rules below. These describe the transformation that occurred.
a. $(x, y) \rightarrow(x-8, y-3) A^{\prime}=$ \qquad , $B^{\prime}=$ \qquad $C^{\prime}=$ \qquad
Transformation:
b. $(x, y) \rightarrow(x,-y)$

A' = \qquad , $\mathrm{B}^{\prime}=$ \qquad $C^{\prime}=$ \qquad
Transformation:
c. $(x, y) \rightarrow(-y,-x)$
$\mathrm{A}^{\prime}=$ \qquad , $B^{\prime}=$ \qquad , $C^{\prime}=$ \qquad
Transformation: \qquad
d. $(x, y) \rightarrow(y, x)$
$A^{\prime}=$ \qquad , $B^{\prime}=$ \qquad , C' = \qquad
Transformation:
$\mathrm{A}^{\prime}=$ \qquad , $\mathrm{B}^{\prime}=$ \qquad , C' = \qquad
e. $(x, y) \rightarrow(-x, y)$

Transformation: \qquad
\qquad , $C^{\prime}=$ \qquad
f. $(x, y) \rightarrow(y,-x)$
$A^{\prime}=$ \qquad , $B^{\prime}=$ \qquad
Transformation: , \qquad
Follow the instructions for each graph.
7. Reflection across $y=-x$.

8. Rule: $(x, y) \rightarrow(x-2, y+4)$

10. Reflection across $\mathrm{x}=-2$.

13. Rotation 90 degrees CW

14. $\langle-2,-3\rangle$

11. Rotation 180 degrees

9. Reflection across $y=-1$.

15. Rule: $(x, y) \rightarrow(-x, y)$

Geometry
Dilations

Name: \qquad
Date: \qquad
Dilation: A transformation that \qquad or \qquad the size of an object.

Scale Factor

-The preimage is enlarge or reduced by a \qquad (k)

\qquad (C)

Reduction: \qquad

$K=$ \qquad
Reduction or Enlargement

Enlargement: \qquad

$K=$ \qquad
Reduction or Enlargement

Notation
C is the \qquad
K is the value of the \qquad

Dilation Properties

Dilation is NOT an isometric transformation so its properties differ from the ones we saw with reflection, rotation and translation. The following properties are preserved between the pre-image and its image when dilating:
\qquad - Angles stay the same.
\qquad - Things that were parallel are still parallel.
\qquad - Points on a line remain on the line.
\qquad IS NOT PRESERVED!!!

After a dilation, the pre-image and image have the \qquad but not the \qquad ـ.

Find the scale factor and determine if the dilation is an enlargement or a reduction.

Reduction or Enlargement

$K=$ \qquad

For a dilation to maintain its proportionality of sides, the two variables must be multiplied by a constant value, k, which is the scale factor.

$$
D_{o, k}(x, y)=(k x, k y)
$$

1. A dilation of $1 / 2$ with
center of dilation O , the origin.

Preimage
A $(6,-4)$
Image

B $(2,-8)$
\qquad

Preimage
D $(3,9)$
E $(9,3)$
Image
\qquad
\qquad

Dilations of polygons in the Coordinate Plane when the Origin is the Center
3.

Dilation Notation: $\mathrm{D}_{0,1 / 2}(\mathrm{x}, \mathrm{y}) \rightarrow(1 / 2 \mathrm{x}, \mathrm{l} / 2 \mathrm{y})$ Preimage

A $(4,4)$
$B(6,3)$
$C(6,8)$
Image
$A^{\prime}(\ldots, \ldots)$
$B^{\prime}(\ldots, \ldots)$
$C^{\prime}(\ldots, \ldots)$
4.

Dilation Notation: $\mathrm{D}_{0,2}(\mathrm{x}, \mathrm{y}) \rightarrow(2 \mathrm{x}, 2 \mathrm{y})$ Preimage

A($-4,-3$)
$B(2,3)$
$C(3,-5)$

Image
$A^{\prime}(\ldots, \ldots)$
B' \qquad
$C^{\prime}(\ldots, \ldots)$

Geometry
Classwork - Dilations

Name: \qquad Date: \qquad

Find the coordinates of the vertices of each figure after it has been dilated by the given scale factor about the origin.

1. dilation of 0.5
2. dilation of 5
$D(3,-4), V(2,1), C(4,-1)$
$K(0,1), J(1,1), I(1,-1)$

Describe the dilation about the origin.
3. $X(-1,0), G(0,1), W(1,-1)$
to $X^{\prime}(-4,0), G^{\prime}(0,4), W^{\prime}(4,-4)$
4. $P(-5,1), Q(-5,2), R(-3,3), S(-4,1)$
to $P^{\prime}(-2.5,0.5), Q^{\prime}(-2.5,1), R^{\prime}(-1.5,1.5), S^{\prime}(-2,0.5)$
5.

6.

Find the vertices after the given dilation about the origin and graph.
7. dilation of 0.5

9. dilation of $1 / 2$

8. dilation of 2

10. dilation of 2

\qquad
Date: \qquad
You should already know how to do the following:

- Translations (slides)
- Reflections (flips, like with a mirror)
- Rotations (spins or turns)
- Dilations (stretches or shrinks)

Now you are going to try some multiple transformations: ORDER MATTERS! So do the first transformation written and then the next one.

1. Translate $\Delta A L T$ if $A(-5,-1), L(-3,-2), T(-3,2)$ by moving it right 6 and down 3 , then reflect the image over the y-axis.

$A^{\prime}(\ldots \quad$ _ $)$
\qquad
$T^{\prime}(\ldots \quad, \quad$)
$A^{\prime \prime}(\ldots, \quad, \quad)$
L" (___
T" (___)
2. Rotate $\Delta \mathrm{ALT}$ if $\mathrm{A}(-5,-1), \mathrm{L}(-3,-2), \mathrm{T}(-3,2) 90^{\circ}$ clockwise around the origin, then reflect the image over the x-axis.

$A^{\prime}(\ldots, \quad$ _ $)$
\qquad

$$
T^{\prime}\left(ـ_{\square},{ }_{\square}\right)
$$

$$
A^{\prime \prime}(\ldots,
$$

$$
\text { L" (______ })
$$

T" \qquad

Mapping a Figure Onto Itself

1. Which transformation would carry the rhombus onto itself?
A. 180 degree rotation about the origin
B. Reflection over the x-axis
C. Reflection over the y-axis
D. 90 degree clockwise rotation about the origin

2. In the coordinate plane to the right, a square is graphed.

A reflection over which line does NOT carry the square onto itself?
A. $x=5$
B. $y=2$
C. $y=x$
D. $x+y=4$

3. Which figure always has exactly four lines of reflection that map the figure onto itself?
A. Square
B. Rectangle
C. Octagon
D. Triangle
4. The regular polygon is rotated about its center. Which angle of rotation will carry the figure onto itself?
A. 60 degrees
B. 72 degrees
C. 108 degrees
D. 216 degrees

5. Which transformation would not carry a square onto itself?
A. a reflection over one of its diagonals
B. a 90 degree rotation clockwise about its center
C. a 180 degree rotation about its center
D. a translation 5 units to the right

Geometry DAY 1.10

Classwork - Composition of Transformations

Name: \qquad
Date: \qquad

Graph the following compound transformations.

1. a. Translation $\langle 4,0\rangle$

$$
K^{\prime}(, \quad) \quad L^{\prime}(, \quad \text { J'(})
$$

b. Reflection over the x-axis

$$
K^{\prime \prime \prime}(,) L^{\prime \prime}(, \quad) J "(,)
$$

2. a. Rotate 90 degrees CCW

$$
Q^{\prime}(, \quad) R^{\prime}(, \quad) S^{\prime}(,)
$$

b. Reflection over the line $y=1$

$$
Q^{\prime \prime}(, \quad) R^{\prime \prime}(, \quad) S^{\prime \prime}(,)
$$

Using the pre-image point ($5,-8$), follow the transformations below. Start back at the pre-image for each number. Use your rules!!!
3. Reflection over the x-axis: $($,
4. Translation vector $\langle-4,-12\rangle:($,
5. Dilation with a scale factor of $1 / 2$: \qquad 1
6. Rotation of 90 degrees CCW: 1,
7. Translation of $\langle 3,-1\rangle \rightarrow$ then Reflection over the y-axis: \qquad 1
8. Rotation of 180 degrees \rightarrow then Dilation of 3: \qquad 1
9. What is the smallest angle of rotation to

\qquad

1. Use the translation $(x, y) \rightarrow(x+1, y-7)$ for questions $a-d$.
a. What is the translation vector? \qquad
b. What is the image of $A(10,-4)$? \qquad
c. What is the image of A^{\prime} from part b (which would be called $A^{\prime \prime}$)? \qquad
d. What is the pre-image of $C^{\prime}(-9,12)$? \qquad
2. What is an isometry? \qquad
3. The vertices of $\triangle A B C$ are $A(-1.0), B(5,3)$, and $C(2,-4)$. Find the vertices of $\triangle A^{\prime} B^{\prime} C^{\prime}$ given the transformation rules below. Then describe the transformation that occurred.
a. $(x, y) \rightarrow(x+11, y-5)$
$A^{\prime}=$ \qquad $B^{\prime}=$ \qquad C' = \qquad
Transformation: \qquad
b. $(x, y) \rightarrow(-x,-y)$
$A^{\prime}=$ \qquad $B^{\prime}=$ \qquad $C^{\prime}=$ \qquad
Transformation: \qquad
c. $(x, y) \rightarrow(y,-x)$
$A^{\prime}=$ \qquad $B^{\prime}=$ \qquad , C' = \qquad
Transformation: \qquad
d. $(x, y) \rightarrow(4 x, 4 y)$
$A^{\prime}=$ \qquad B' = \qquad , C' = \qquad
Transformation: \qquad
e. $(x, y) \rightarrow(y, x)$
$A^{\prime}=$ \qquad $B^{\prime}=$ \qquad C' = \qquad
Transformation: \qquad
f. $(x, y) \rightarrow(-y, x)$
$A^{\prime}=$ \qquad $B^{\prime}=$ \qquad , C' = \qquad
Transformation: \qquad
4. Answer the following questions.
a. After a reflection over the line $y=x,(-2,16)$ is the image of point C. What is the original location of point C ?
b. After a reflection over the x-axis, $(8,0)$ is the image of point M. What is the original location of point M ?
c. Given triangle FUN with coordinates $F(-4,1), U(11,-12)$ and $N(-7,-9)$, find the image of point N after a rotation of 90 degrees counterclockwise.
d. After a dilation with a scale factor of $1 / 2,(5,-4)$ is the image of point N. What is the original location of point N?
5. Write the transformation rule for the following graphs.
a. \qquad b. \qquad

c. \qquad

Follow the instructions for each graph.
6. Reflection over $x=1$

7. Rotation 90 degrees CW

8. Reflection over $y=-x$

9. $\langle 2,3\rangle$
10. $(x, y) \rightarrow(x, y-4)$

11. (x, y) $\rightarrow(0.5 x, 0.5 y)$

Composition of Transformations
(Label the first transformation with $\Delta A^{\prime} B^{\prime} C^{\prime}$. After the second transformation, label it with $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.)
12.
a. rotation 180 degrees
b. reflection over $y=-1$

\qquad
13. a. dilation of 2
b. <1, -2>

\qquad
\qquad
J' ___ J"_ _
14. How many lines of reflection does a square have that maps it onto itself?
A. 2
B. 3
C. 4
D. 6

15. Which of the following transformations does NOT map the square onto itself?
A. Reflection over the y-axis
B. Reflection over the line $y=-1$
C. Rotation 45 degrees about the origin
D. All of the above

[^0]: ${ }^{* *}$ Note: If E is on the line of reflection, then E and E^{\prime} are the

