Geometry 2022 Unit 1 Agenda — Transformations

DATE	DAY	LESSON	PAGES	HOMEWORK
MON 8/1		Welcome to Geometry! Getting to know you!		Create DeltaMath login
TUES 8/2	1.1	Graphing Points	2 – 5	
WED 8/3	1.2	Translations	6 – 9	
THUR 8/4	1.3	Reflections, Day 1	10 – 12	HW 1.1 Due 8/11
FRI 8/5	1.4	Reflections, Day 2	13 – 15	@ 8:20 AM before quiz
MON 8/8	1.5	Activity – Translations & Reflections		
TUES 8/9	1.6	Rotations	16 – 17	
WED 8/10	1.7	Review for Quiz Transformations Partner Activity	18 – 19	Finish Quiz Review & DM due TOMORROW
THURS 8/11	1.8	QUIZ Intro to Geo & Transformations		
FRI 8/12	1.9	Dilations	20 – 22	DeltaMath HW 1.2
MON 8/15	1.10	Composition of Transformations	23 – 25	@ 8:20 AM before test
TUES 8/16	1.11	Test Review – Task Cards	27 – 29 Test Review	
WED 8/17	1.12	Warm Up & Test Review	26 – 29 Test Review	Finish Test Review & DM due TOMORROW
THURS 8/18	1.13	TEST TODAY!!!! GOOD LUCK!!!		

NAME: _____

Agenda is subject to change!!!

Geometry Coordinate Plane & Graphing Notes

X-Axis:

Y-Axis:

Origin:

Quadrants:

Ordered Pair:

Plot the points on the graph. Label each point and tell what quadrant/axis it falls into.

- A (1, 3) Quadrant: _____
- B (-1, -3) Quadrant: _____
- C (1, -3) Quadrant: _____
- D (-1, 3) Quadrant: _____
- E (0, 8) Axis: _____
- F (8, 0) Axis: _____

- G (-2, -10) Quadrant: _____
- H (0, -5) Quadrant: ____
- I (6, -2) Quadrant: _____
- J (-8, 0) Quadrant: _____
- K (-10, 10) Quadrant: _____
- L (-9, 3) Quadrant: _____

Write the coordinates of each point on the graph. Tell what quadrant/axis it falls into.

PUTTING IT ALL TOGETHER

- 1. Which point is located on the origin?
- 2. Which point is on the x-axis (not including the point on the origin)?
- 3. Which point is located at (-6, -2)?
- 4. Which point is in Quadrant IV?
- 5. Plot point H at (4, -4).
- 6. Plot point J at (-3, 0).
- 7. What are the coordinates of point F?
- 8. What are the coordinates of point D?

Geometry Translations	Name:	Name: Date:			
Transformation: The	, or, of all	points of a figure in a plane			
according to a com	imon operation, such as translation	n, reflection or rotation.			
Pre-image: A figure	a transformation has taken pl	CCC. If the preimage has point A, the image has point A'. A' is read as "A prime"			
Image: The figure that result	s a transformation.	A C B'			
Isometry: A transformation t	hat preserves	В			
• A is a t are moved the same • The distance and direction of 	ransformation where all the points in the same are indicated by a ray called the 	of a figure			
• A vector is a quantity that h and can be thought of as a	as both I line with a starting point and an ei	and, ndpoint.			
• A translation is an to the pre	so the image of a tro image.	anslated figure is			
Tell whether each transfor	mation appears to be a translation	and explain.			

Translations in the Coordinate Plane

Often the rule for the translation will be given as $(x, y) \rightarrow (x + a, y + b)$. This is a shift a units horizontally in the x-direction and b units vertically in the y-direction.

For example, in the coordinate plane to the right shows the translation $(x, y) \rightarrow (x + 4, y - 2)$ shifts each point 4 units to the right and 2 units down.

Drawing Translations in the Coordinate Plane

Translate the figure with the given vertices using the rule.

What about this notation? These are called vectors!

8. **(2,3)**

Geometry Classwork – Translations

Date: ____

1. Which is the image and which is the pre-image (1 or 2)?

- How do you know? _____
- 2. $(x, y) \rightarrow (x + 3, y 5)$

6. Use the translation $(x, y) \rightarrow (x + 5, y - 9)$ for the questions below.

What is the translation vector?

What is the image of A (-6, 3)? _____ What is the image of B (4, 8)? _____

What is the image of A' from above, which would be called A''?

What is the pre-image of K'(12, 7)? _____ (*Think about this – you want to find K)

7. If the vertices of $\triangle ABC$ are A(-6, -7), B(-3, -1), and C(5, 2), find the vertices of $\triangle A'B'C$ after each of the translations below.

9. A(-4, -4), B(-2, -3), C(-1, 3);

11. A(2, 1), B(-2, 0), C(3, -2);

10. R(-3, 1), S(-2, 3), T(2, 3), U(3, 1);

12. A(-1, 0), B(3, -1), C(1, -2), D(0, -2);

Geometry		Name:			
Reflections, Day 1		Date:			
Α	is a transform	is a transformation where each point in a shape appears at an			
	distance on tl	he opposite side of a given line, called the			
		Reflection through line ℓ			
It preserves	so it is an _				
Each point in the pr	eimage will move	the distance from the line of reflection			
along a line that is _		_ to the line of reflection.			
X-AXIS REFLECTION					
Pre-Image	Image	■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■			
F: (-3, 7)	F':				
E: (0, -4)	E':				
B: (2, 3)	В':				
When reflecting acr	ross the x-axis what co	bordinate changes and how?			
What coordinate sto	ays the same?	So, (x, y) →			
Y-AXIS REFLECTION		*			
Pre-Image	Image				
F: (-3, 7)	F':	₿'+ +B			
E: (0, -4)	E':				
B: (2, 3)	B':				
When reflecting acr	ross the y-axis what co	pordinate changes and how?			

What coordinate stays the same? _____ So, $(x, y) \rightarrow$ _____.

**Note: If E is on the line of reflection, then E and E' are the ______.

Let's Try! Reflect the given figure across the given axis.

1. Reflect across the x-axis.

- 2. Reflect across the y-axis.
- 3. Reflect across the y-axis.

What if the line of reflection is not the x- or y-axis?

Ex 1. Reflection across x = -1

Ex 2. Reflection across y = 1

Your Turn! Reflect the figure over the given line of reflection.

1. Reflect across x = 0

2. Reflect across y = 2

3. Reflect across x = 2

Geometry Name: _____ Date: Classwork – Reflections, Day 1 Tell whether each transformation appears to be a reflection and explain. 2. 3. 1. 4.

Write the line of reflection for the following graphs.

Reflect the given figure across the given axis.

- 9. Reflect across the x-axis.
- 10. Reflect across the y-axis. 11. Reflect across y = -1.

12. Reflect across x = -2.

13. Reflect across y = 2.

- x
- 14. Reflect across the x-axis.

Geometry

Reflections, Day 2

Line of Reflection: y = x

Pre-Image	Image
J (-3, 7)	J'
A (0, -4)	Α'
N (2, 3)	N'

When reflecting a point in the line y = x, what happens to the coordinates?

So, (x, y) becomes _____.

Line of Reflection: y = -x

Pre-Image	Image
J (-3, 7)	J,
A (0, -4)	Α'
N (2, 3)	N'

_ _ _ _ _ _ _ _ _ _

When reflecting a point in the line y = -x, what happens to the coordinates?

So, (x, y) becomes _____.

Ex. 3 Reflect over y = x.

Geometry Classwork – ALL Reflections

Name: ____

Date: _____

For #1 - 6, draw the triangle after each transformation and give the coordinates of A', B' and C'.

Complete.

7. After a reflection over the line y = x, (8, 11) is the image of point C. What is the original location of point C?

8. After a reflection over the y-axis, (0, 4) is the image of point L. What is the original location of point L?

9. The reflection of J(-1, 11) is J'(-1, -11). What is the reflection of D(5, -5) if the point is reflected across the same line? What is the line of reflection?

10. The reflection of K(-2, 8) is K'(8, -2). What is the reflection of L(10, -3) if the point is reflected across the same line? What is the line of reflection?

11. Given triangle JBN with coordinates J(4, 5), B(-1, -7), and N(-7, 8), find the image of point B after a reflection over the line y = x.

12. After a reflection over the x-axis, (5, 10) is the image of point N. What is the original location of point N?

13. Given triangle ONA with coordinates O(-4, 1), N(11, -12) and A(-7, -9), find the image of point O after a reflection over the x-axis.

14. Given triangle UCJ with coordinates U(-12, 7), C(4, 2), and J(-3, 9), find the image of point C after a reflection over the y-axis.

15. The reflection of H(-10, -11) is H'(10, -11). What is the reflection of N(8, 10), if the point is reflected across the same line? What is the line of reflection?

If the vertices of $\triangle ABC$ are A(0, 5), B(-4, 2), and C(10, -6), find the vertices of $\triangle A'B'C'$ after each of the translations below.

 a. $(x, y) \rightarrow (-y, x)$ A' = _____
 B' = _____
 C' = _____
 Transformation: _____

 b. $(x, y) \rightarrow (y, -x)$ A' = _____
 B' = _____
 C' = _____
 Transformation: _____

 c. $(x, y) \rightarrow (-x, -y)$ A' = _____
 B' = _____
 C' = _____
 Transformation: ______

Geometry Classwork – Rotations

3. Rotate 90 degrees CCW.

Write the degree and direction of the rotation shown below!

EVERYTHING! Write the translation vector, line of reflection, or direction and degree of rotation!

1. Use the translation $(x, y) \rightarrow (x - 4, y + 8)$ for questions a - d.

- a. What is the translation vector?
- b. What is the image of A (-5, -4)?
- c. What is the image of A'' (use part b)? _____
- d. What is the pre-image of B' (14, 8)?

Write the <u>translation vector</u>, <u>line of reflection</u>, or <u>degree & direction of rotation</u> for the following graphs.

5. Write your rules for the following transformations:

6. The vertices of $\triangle ABC$ are A(2, -4), B(0, 6), and C(-5, 3). Find the vertices of $\triangle A'B'C'$ given the transformation rules below. These describe the transformation that occurred.

Follow the instructions for each graph.

13. Rotation 90 degrees CW 14. $\langle -2, -3 \rangle$

x

15. Rule: $(x, y) \rightarrow (-x, y)$

x

Geometry	Name:			
Dilations	Date:			
Dilation: A transformation that	_ or the size of an object.			
DILATION - CONTRACT PRE-IMAGE	CTION (REDUCTION) DILATION - EXPANSION (ENLARGEMENT) IMAGE PRE-IMAGE IMAGE IMAGE			
Scale Factor	(<u> </u>			
-The preimage is enlarge or reduced by a	(k) K -			
-The scale factor is determined by the distance fro	om the (C)			
Reduction:	Enlargement:			
K =	K =			
Reduction or Enlargement	Reduction or Enlargement			
Notation				
Ci	is the			
Kis	is the value of the			
Dilation Properties Dilation is NOT an isometric transformation so its preflection, rotation and translation. The following prand its image when dilating:	properties differ from the ones we saw with properties are preserved between the pre-image are still parallel.			
- Points on a line remain on t	the line.			
IS NOT PRESERVED!!!				
After a dilation, the pre-image and image have th	he but not			

the _____.

Find the scale factor and determine if the dilation is an enlargement or a reduction.

For a dilation to maintain its proportionality of sides, the two variables must be multiplied by a constant value, k, which is the scale factor.

 $D_{O,k}(x, y) = (kx, ky)$

Dilations of polygons in the Coordinate Plane when the Origin is the Center

Dilation Notation: $D_{0,1/2}(x, y) \rightarrow (1/2x, 1/2y)$ <u>Preimage</u><u>Image</u>

A(4, 4)	A'(,)
B(6, 3)	B'(,)
C(6, 8)	C'(,)

Dilation Notation: $D_{0,2}(x, y) \rightarrow (2x, 2y)$ <u>Preimage</u> <u>Image</u>

A(-4, -3)	A'(,)
B(2, 3)	B'(,)
C(3, -5)	C'(,)

Geometry Classwork – Dilations

Name: _____

Date: ___

Find the coordinates of the vertices of each figure after it has been dilated by the given scale factor about the origin.

1. dilation of 0.5

D(3, -4), V(2, 1), C(4, -1)

2. dilation of 5

K(0, 1), J(1, 1), I(1, -1)

Describe the dilation about the origin.

3. X(-1, 0), G(0, 1), W(1, -1)

to X'(-4, 0), G'(0, 4), W'(4, -4)

4. P(-5, 1), Q(-5, 2), R(-3, 3), S(-4, 1) to P'(-2.5, 0.5), Q'(-2.5, 1), R'(-1.5, 1.5), S'(-2, 0.5)

Find the vertices after the given dilation about the origin and graph.

7. dilation of 0.5

9. dilation of $\frac{1}{2}$

10. dilation of 2

Geometry – DAY 1.10 Multiple Transformations

Date:

You should already know how to do the following:

- Translations (slides)
- Reflections (flips, like with a mirror)
- Rotations (spins or turns)
- Dilations (stretches or shrinks)

Now you are going to try some multiple transformations: ORDER MATTERS! So do the first transformation written and then the next one.

1. Translate \triangle ALT if A(-5,-1), L(-3,-2), T(-3,2)by moving it right 6 and down 3, then reflect the image over the y-axis.

2. Rotate \triangle ALT if A(-5,-1), L(-3,-2), T(-3,2) 90° clockwise around the origin, then reflect the image over the x-axis.

- 1. Which transformation would carry the rhombus onto itself?
- A. 180 degree rotation about the origin
- B. Reflection over the x-axis
- C. Reflection over the y-axis
- D. 90 degree clockwise rotation about the origin

- A. x = 5
- B. y = 2 C. y = x
- D. x + y = 4

- A. Square
- B. Rectangle
- C. Octagon
- D. Triangle

4. The regular polygon is rotated about its center. Which angle of rotation will carry the figure onto itself?

- A. 60 degrees
- B. 72 degrees
- C. 108 degrees
- D. 216 degrees

5. Which transformation would not carry a square onto itself?

- A. a reflection over one of its diagonals
- B. a 90 degree rotation clockwise about its center
- C. a 180 degree rotation about its center
- D. a translation 5 units to the right

Using the pre-image point (5, -8), follow the transformations below. Start back at the pre-image for each number. Use your rules!!!

3. Reflection over the x-axis: (,) 4. Translation vector $\langle -4, -12 \rangle$: (,)

- 5. Dilation with a scale factor of $\frac{1}{2}$: (______) 6. Rotation of 90 degrees CCW: (______)
- 7. Translation of $(3,-1) \rightarrow$ then Reflection over the y-axis: (_____)
- 8. Rotation of 180 degrees \rightarrow then Dilation of 3: (_____)
- 9. What is the smallest angle of rotation to

1.	Use the	translation	(x, y) →	• (x + 1,	y - 7) for	questions a – d.
----	---------	-------------	----------	------------------	------------	------------------

a. What is the translation vector?

b. What is the image of A (10, -4)?

c. What is the image of A' from part b (which would be called A")?

d. What is the pre-image of C' (-9, 12)?

2. What is an isometry?

3. The vertices of $\triangle ABC$ are A(-1.0), B(5, 3), and C(2, -4). Find the vertices of $\triangle A'B'C'$ given the transformation rules below. Then describe the transformation that occurred.

a. (x, y) → (x + 11, y – 5)	A' =, B' =, C' =	
	Transformation:	-
b. (x, y) → (-x, -y)	A' =, B' =, C' =	
	Transformation:	-
c. (x, y) → (y, -x)	A' =, B' =, C' =	
	Transformation:	-
d. (x, y) → (4x, 4y)	A' =, B' =, C' =	
	Transformation:	-
e. $(x, y) \rightarrow (y, x)$	A' =, B' =, C' =	
	Transformation:	-
f. (x, y) → (-y, x)	A' =, B' =, C' =	
	Transformation:	

4. Answer the following questions.

a. After a reflection over the line y = x, (-2, 16) is the image of point C. What is the original location of point C?

- b. After a reflection over the x-axis, (8, 0) is the image of point M. What is the original location of point M?
- c. Given triangle FUN with coordinates F(-4, 1), U(11, -12) and N(-7, -9), find the image of point N after a rotation of 90 degrees counterclockwise.
- d. After a dilation with a scale factor of $\frac{1}{2}$, (5, -4) is the **image** of point N. What is the original location of point N?

5. Write the transformation rule for the following graphs.

Follow the instructions for each graph.

Composition of Transformations

(Label the first transformation with $\Delta A'B'C'$. After the second transformation, label it with $\Delta A''B''C''$.)

GOOD LUCK STUDYING!!!! Don't forget to study your notes, your quiz, and this test review!!!