Vector Bingo

Number	Question	Answer
1	Find Vector $A B$ in Component Form. Given: $A=(8,-7) \quad B=(-7,-10)$	<-15, -3>
2	Find the Vector Given B is the Initial Point and A is the Terminal Point. Write as a sum of unit vectors. $A=(7,1) B=(10,-5)$	$-3 i+6 j$
3	Find the component form of the resultant vector. $\begin{aligned} & \mathbf{u}=\langle 1,-6\rangle \\ & \mathbf{v}=\langle-7,-5\rangle \end{aligned}$ Find: $-\mathbf{u}+\mathbf{v}$	$\langle-8,1\rangle$
4	Express resultant vector as a Linear Combination. $\begin{aligned} & \mathbf{u}=-9 \mathbf{i} \\ & \mathbf{g}=3 \mathbf{i}+4 \mathbf{j} \\ & \text { Find: } 9 \mathbf{u}-7 \mathbf{g} \end{aligned}$	$-102 \mathbf{i}-28 \mathbf{j}$
5	Find the Magnitude of the Vector from the given information: $\mathbf{b}=\langle-6,-2\rangle$	$2 \sqrt{10}$
6	Find the Magnitude of the Vector from the given information: $-15 \mathbf{i}+36 \mathbf{j}$	39
7	Find the Direction Angle of the Vector from the given information: $20 \mathbf{i}-17 \mathbf{j}$	319.64°

8	Find the Direction Angle of the Vector. $\langle-10, \sqrt{69}\rangle$	140.28°
9	Find the Unit Vector from the given information: $\mathbf{u}=\langle 24,-32\rangle$	$\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle$
10	Find the Unit Vector. $-13 i+6 \sqrt{22} j$	$-\frac{13}{31} i+\frac{6 \sqrt{22}}{31} j$
11	Find the Dot Product of the Vectors. $\begin{aligned} & \mathbf{u}=-7 \mathbf{i} \\ & \mathbf{v}=-4 \mathbf{i}+5 \mathbf{j} \end{aligned}$	28
12	Find the Dot Product of the Vectors. $\begin{aligned} & \mathbf{u}=\langle 8,6\rangle \\ & \mathbf{v}=\langle-6,6\rangle \end{aligned}$	-12
${ }^{13}$	Find the angle between the Vectors. $\begin{aligned} & \mathbf{u}=3 \mathbf{i}+6 \mathbf{j} \\ & \mathbf{v}=-3 \mathbf{i}+5 \mathbf{j} \end{aligned}$	$57.53{ }^{\circ}$
14	Find the angle between the Vectors. $\begin{aligned} & \mathbf{u}=\langle-6,-9\rangle \\ & \mathbf{v}=\langle 3,3\rangle \end{aligned}$	168.69°
15	Tell if the two vectors are orthogonal. $\begin{aligned} & \mathbf{u}=\langle 25,-15\rangle \\ & \mathbf{v}=\langle 3,5\rangle \end{aligned}$	Yes

16	Tell if the two vectors are perpendicular. $\begin{aligned} & \mathbf{u}=-9 \mathbf{i}-2 \mathbf{j} \\ & \mathbf{v}=3 \mathbf{i}-4 \mathbf{j} \end{aligned}$	No				
17	Given $\\|\vec{a}\\|=5$ and $\\|b\\|=11$ and the angle between the two vectors measures 74° when the vectors are positioned tail-to-tail. Find the length of the resultant.	13.28				
18	Using \#17, find the measure of the angle that the resultant makes with vector a.	$52.76{ }^{\circ}$				
19	Find the component form of the vector: $\frac{3}{4}\left\langle\cos 315^{\circ}, \sin 315^{\circ}\right\rangle$	$\left\langle\frac{3 \sqrt{2}}{8},-\frac{3 \sqrt{2}}{8}\right\rangle$				
20	Find the component form of the vector: $8\left(\cos \frac{5 \pi}{6} i+\sin \frac{5 \pi}{6} j\right)$	$\langle-4 \sqrt{3}, 4\rangle$				
21	Write the vector in trig form: $<4,4>$	$4 \sqrt{2}\left\langle\cos \frac{\pi}{4}, \sin \frac{\pi}{4}\right\rangle$				
22	Write the vector as a sum of unit vectors: $3\left(\cos 35^{\circ} i+\sin 35^{\circ} j\right)-4\left(\cos 175^{\circ} i+\sin 175^{\circ} j\right)$	6.44i+1.37j				
23	Find the vector in component form with magnitude 6 and the same direction as <-2,5>	$\left\langle\frac{-12 \sqrt{29}}{29}, \frac{30 \sqrt{29}}{29}\right\rangle$				
24	Suppose that you swim at $2 \mathrm{~km} / \mathrm{hr}$ across a stream that has a $4 \mathrm{~km} / \mathrm{hr}$ current. What speed are you heading?	4.47				

W.	A	T	PI	O

Answers:

Place these answers on your board. I would suggest for you to cross out the answer as you place it on the board.

Free Space	$<-15,-3\rangle$	$-\frac{13}{31} i+\frac{6 \sqrt{22}}{31} j$	No
28	168.69°	$\left\langle\frac{-12 \sqrt{29}}{29}, \frac{30 \sqrt{29}}{29}\right\rangle$	$\langle-8,1\rangle$
4.47	$-3 i+6 j$	$\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle$	

$6.44 \mathbf{i}+1.37 \mathbf{j} \quad-102 \mathbf{i}-28 \mathbf{j} \quad\left(\frac{3 \sqrt{2}}{8},-\frac{3 \sqrt{2}}{8}\right\rangle \quad 2 \sqrt{10}$
57.53°

$$
4 \sqrt{2}\left\langle\cos \frac{\pi}{4}, \sin \frac{\pi}{4}\right\rangle
$$

Yes

