NAME_____

For the following problems find the <u>dot product</u> of the two vectors:

1.
$$\vec{a} = \langle 3, 5 \rangle$$
 and $\vec{b} = \langle -2, 3 \rangle$
2. $\vec{c} = \langle 1, -7 \rangle$ and $\vec{d} = \langle -2, -4 \rangle$
3. $\vec{e} = \frac{2}{3}\vec{i} + \frac{3}{2}\vec{i}$ and $\vec{f} = -\frac{5}{2}\vec{i} + \frac{4}{3}\vec{j}$
4. $\vec{g} = -3\vec{i} + 5\vec{j}$ and $\vec{h} = -5\vec{i} - 3\vec{j}$

For the following problems find the <u>angle between</u> the two given vectors. Use [0°, 360°). (round to the nearest 100th): 5. $\vec{u} = 3\vec{i} - 5\vec{j}$ and $\vec{v} = -6\vec{i} - 2\vec{j}$ 6. $\vec{v} = < -8, -3 >$ and $\vec{w} = < 3, -8 >$

7.
$$\vec{u} = \vec{i} + 3\vec{j}$$
 and $\vec{v} = -2\vec{j}$
8. $\vec{v} = \frac{2}{3}\vec{i} + \frac{3}{2}\vec{j}$ and $\vec{w} = -\frac{5}{2}\vec{i} + \frac{4}{3}\vec{j}$

For the following problems determine if the vectors are orthogonal (explain mathematically):

9. $\vec{v} = <-8, -3>$ and $\vec{w} = <3, -8>$ 10. $\vec{v} = <0, -7>$ and $\vec{w} = <11, -2>$

11.
$$\vec{u} = \vec{i} + 2\vec{j}$$
 and $\vec{v} = 2\vec{i} - \vec{j}$
12. $\vec{u} = 10\vec{i} - 2\vec{j}$ and $\vec{v} = 2\vec{i} + 9\vec{j}$

For the following problems find the <u>dot product</u> of the vectors given their magnitude and the angle in between the two vectors (round to the nearest hundredth):

13. If $||\vec{a}|| = 7$, $||\vec{b}|| = 8$, and $\theta = 155^{\circ}$

14. If
$$||\vec{c}|| = 3$$
, $||\vec{d}|| = 11$, and $\theta = 65^{\circ}$

15. If
$$||\vec{e}|| = 5$$
, $\left||\vec{f}|\right| = 7$, and $\theta = 102^{\circ}$

16. If
$$||\vec{g}|| = 11$$
, $||\vec{h}|| = 2$, and $\theta = 14^{\circ}$

For the following problems find the <u>angle between the two vectors</u> given their dot product. Use [0°, 360°). (round to the nearest hundredth):

17. If
$$||\vec{g}|| = 10$$
, $||\vec{h}|| = 20$, and $\vec{g} \cdot \vec{h} = -35$ find θ

18. If $||\vec{v}|| = 12$, $||\vec{w}|| = 6$, and $\vec{v} \cdot \vec{w} = 67$ find θ

Answers: 1) 9 2) 26 3) 1/3 4) 0 5) 102.53° 6) 90° 7)161.57° 8) 85.89° 9) yes 10) no 11) yes 12) no 13) -50.75 14) 13.95 15) -7.28 16) 21.35 17) 100.08° 18) 21.48°