Graph each ellipse. Find the center, vertices, covertices, foci, and lengths of the major and minor axes for each ellipse whose equation is given.

1. 
$$\frac{x^2}{4} + \frac{y^2}{16} = 1$$

C \_\_\_\_\_

V \_\_\_\_\_

CV \_\_\_\_\_

F \_\_\_\_\_

major length = \_\_\_\_\_

minor length = \_\_\_\_\_



2. 
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

C \_\_\_\_\_

V \_\_\_\_\_

CV \_\_\_\_\_

F \_\_\_\_\_

major length = \_\_\_\_\_

minor length = \_\_\_\_\_



3.  $4x^2 + 81y^2 = 324$  (hint: Divide the equation by 324.)

C \_\_\_\_\_

V \_\_\_\_\_

CV \_\_\_\_\_

F \_\_\_\_\_

major length = \_\_\_\_\_

minor length = \_\_\_\_\_



4. 
$$\frac{(x-2)^2}{4} + \frac{(y+3)^2}{9} = 1$$

C \_\_\_\_\_

V \_\_\_\_\_

CV \_\_\_\_\_

F \_\_\_\_\_

major length = \_\_\_\_\_

minor length = \_\_\_\_\_



5. 
$$\frac{(x+4)^2}{25} + \frac{y^2}{16} = 1$$

C \_\_\_\_\_

V \_\_\_\_\_

CV \_\_\_\_\_

F \_\_\_\_\_

major length = \_\_\_\_\_

minor length = \_\_\_\_\_



6. 
$$\frac{(x+2)^2}{4} + \frac{(y-4)^2}{1} = 1$$

C \_\_\_\_\_

V \_\_\_\_\_

CV \_\_\_\_\_

F \_\_\_\_\_

major length = \_\_\_\_\_

minor length = \_\_\_\_\_



7. 
$$\frac{(x-3)^2}{25} + \frac{(y+3)^2}{36} = 1$$

C \_\_\_\_\_

V \_\_\_\_\_

CV \_\_\_\_\_

F \_\_\_\_\_

major length = \_\_\_\_\_

minor length = \_\_\_\_\_

