\qquad
Date:
ROTATION: A trans formation that turns a figure about a fixed point through a given angle and given direction. The amount of rotation is called the degree
\qquad of \qquad and it is measured in degrees. Figures can be rotated Clockwise (cw) \qquad or counterclockwise (ccu . The rotations we are going to focus on are 90 degrees clockwise, 90 degrees counterclockwise, and 180 degrees around the origin.

ROTATIONS:

qu degrees clockwise: $(x, y) \rightarrow$ (Y) qu degrees counterclockwise: $(x, y) \rightarrow(-y, x)$ 180 degree rotation: $(x, y) \rightarrow(-x,-y)$

Let's Try! ROTATE 90 DEGREES CLOCKWISE about the origin! (270 degrees CCW)

Let's Try! ROTATE 180 DEGREES
about the origin!

Write the degree and direction of the rotation below!

3.

ROTATE 90 DEGREES COUNTERCLOCKWISE about the origin! (270 degrees CW)
2.

If the vertices of $\triangle A B C$ are $A(0,5), B(-4,2)$, and $C(10,-6)$, find the vertices of $\triangle A^{\prime} B^{\prime} C^{\prime}$ after each of the translations below.
a. $(x, y) \rightarrow(-y, x) \quad A^{\prime}=(-5,0) \quad B^{\prime}=(-2,-4)$
b. $(x, y) \rightarrow(y,-x) \quad A^{\prime}=(5,0)$ $B^{\prime}=\underline{(2,4)}$
c. $(x, y) \rightarrow(-x,-y)$ $A^{\prime}=(0,-5)$ $B^{\prime}=(4,-2)$ $C^{\prime}=(-10,6)$ Transformation: \qquad
180° rotation

